ORACLE

The Ruby Logo is Copyright (c) 2006, Yukihiro Matsumoto. It is licensed under the terms of the Creative Commons Attribution-ShareAlike 2.5 agreement.

JRuby+Truffle

Why it’s important to optimise the tricky parts

Chris Seaton
Research Manager
Oracle Labs

2 June 2016

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The followingis intended to provide some insight into a line of research in Oracle Labs. It
isintended for information purposes only, and may not be incorporated into any contract.
It is nota commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. Oracle reserves the right to alter its
development plans and practices at any time, and the development, release, and timing
of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

: ‘ CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Ruby

Imperative

‘Scripting’ (Perl)
Object-oriented (Smalltalk)
Batteries included

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

def delete_entry(key, options)
if File.exist?(key)
begin
File.delete(key)
delete_empty_directories(File.dirname(key))
true
rescue => ¢
Just in case the error was caused by
another process deleting the file first.
raise e if File.exist?(key)
false
end
end
end

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

MRI

Simple bytecode interpreter
Implementedin C
Core library implemented in C

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

The JRuby logo is copyright (c) Tony Price 2011, licensed under the terms of Creative Commons Attribution-NoDerivs 3.0 Unported (CC BY-ND 3.0)

JRuby

JITs by emitting JVM bytecode
VM in Java

Core library mostly in Java

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

The Rubinius logo is copyright 2011 Shane Becker, licensed under the terms of Creative Commons Attribution-NoDerivatives 4.0 International — CC BY-ND 4.0

Rubinius

JITs by emitting LLVM IR

VM in C++
Core library mostly in Ruby

c ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

<€ ="

+ Truffle and Graal

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Lexer
Parser
Intermediate rep.
Bytecode generator
Core library

ORACLE

Lexe r Lexer

Parser Parser
Bytecode
AST JIT
Core library Primitives

Core library
Core library

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compatibility with the
language (spec/ruby)

100%

OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compatibility with the
core library (spec/ruby)

0%

OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

6
—~ 5
n
a
25 4
ST
= e
S o 3
o £
o @
3E -
8'§
)
Q c
0 =
P
©
- 0

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

70
65
60
55
50
45
40
35
30
25
20
15
10

)
8
25
0%
= e
8 o
o £
o 9
_30.
$.§
a 2
v =

o)
n
©
o

OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Why aren’t you using more of JRuby?
Such as the existing Java implementation
of the core library?

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

What makes Ruby difficult to
optimise?

ORACLE

How do people want to
write Ruby?

ORACLE

def clamp(num, min, max)
min, num, max].sort[1]
end

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

def include?(value)
if value.is_a?(::Range)
1...10 includes 1..9 but it does not include 1..140.
operator = exclude_end? && !value.exclude_end? ? :< :
super(value.first) && value.last.send(operator, last)
else
super
end
end

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

<=

class Object
An object is blank +if 2t’s false, empty, or a whitespace string.

For example, ’’, ’ > +nel+, [], and {} are all blank.
def blank?
respond_to?(:empty?) ? !lempty? : !self
end
end

OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

20

ORACLE

def hard_mix(fg, bg, opts={})
return apply_opacity(fg, opts)
if fully_transparent?(bg)

return bg if fully_transparent?(fg)

mix_alpha, dst_alpha = calculate_alphas(
fg, bg, DEFAULT _0PTS.merge(opts))

new_r = blend_channel (r(bg), (r(bg)

+ r(fg) <= 255) 7 0 : 255, mix_alpha)
new_g = blend_channel (g(bg), (g(bg)

+ g(fg) <= 255) ? 0 : 255, mix_alpha)
new_b = blend_channel (b(bg), (b(bg)

+ b(fg) <= 255) ? 0 : 255, mix_alpha)

rgba(new_r, new_g, new_b, dst_alpha)
end

def method_missing(method, *args, &block)
return ChunkyPNG::Color.send(method, *args)
if ChunkyPNG::Color.respond_to?(method)
normal (*args)
end

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

21

class Duration
attr_accessor :value

def initialize(value)
Gvalue = value

end

def as_json

end

def inspect

end

def method_missing(method, *args, &block)
value.send(method, *args, &block)

end
end

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

def grayscale_entry(bit_depth)
value = ChunkyPNG::Canvas.send(
:"decode_png_resample_#{bit_depth/bit_value",
content.unpack(’n’) [0])
ChunkyPNG: :Color.grayscale(value)
end

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

23

ORACLE

def delegate(method)
method_def = (
"def #{method/ (*args, &block)\n" +
" delegated. #{method} (¥args, &block)\n" +
" endll
)
module_eval (method_def, file, line)
end

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

24

Executes the generated ERB code to produce a completed template, returning
the results of that code. (See ERB::new for details on how this process
can be affected by _safe_level_.)

b accepts a Binding object which is used to set the context of
code evaluation.

H OH H HEH B R R

def result(b=new_toplevel)
if @safe_level

proc {
$SAFE = @safe_level
eval(@src, b, (@filename || '(erb)'), @lineno)
}.call
else
eval(@src, b, (@filename || '(erb)'), @lineno)
end

end

OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

25

Why can’t a conventional VM
optimise this?

Why can’t JRuby make this as fast
as we want?

ORACLE

First problem: JRuby’s core library is
megamorphic

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@JRubyMethod(name = "+")
public IRubyObject op_plus(ThreadContext context, IRubyObject other) {
if (other instanceof RubyFixnum) {
return addFixnum(context, (RubyFixnum) other);
}

if (other instanceof RubyBignum) {
return ((RubyBignum) other).op_plus(context, this);
}

if (other instanceof RubyFloat) {
return context.runtime.newFloat(
(double) value + ((RubyFloat) other).getDoublevValue());
}

return coerceBin(context, "+", other);

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Second problem: JRuby’s core library is
stateless

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@JRubyMethod(name = "send")

public IRubyObject send19(ThreadContext context, IRubyObject arg@, Block block) {
String name = RubySymbol.objectToSymbolString(arg);

DynamicMethod method = getMetaClass().searchMethod(name);

if (getMetaClass().shouldCallMethodMissing(method)) {
return Helpers.callMethodMissing(context, this,

method.getVisibility(), name, CallType.FUNCTIONAL, block);
}

return method.call(context, this, getMetaClass(), name, block);

c ®
OR Cl—e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Third problem: JRuby’s core library is
very deep

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@JRubyMethod(name = "sort")
public IRubyObject sort(ThreadContext context, Block block) {
modify();
if (reallLength > 1) {
return sortInternal(context, block);
}

return this;

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

private IRubyObject sortInternal(final ThreadContext context, final Block block) {
IRubyObject[] newValues = new IRubyObject[reallLength];
int length = reallength;

safeArrayCopy(values, begin, newValues, 0, length);
Qsort.sort(newValues, @, length, new Comparator() {
public int compare(Object o0l, Object 02) {
IRubyObject objl = (IRubyObject) o1l;
IRubyObject obj2 = (IRubyObject) o02;
IRubyObject ret = block.yieldArray(context, getRuntime().newArray(objl, obj2), null);
return RubyComparable.cmpint(context, ret, objl, obj2);
}
s

values = newValues;
begin = 0;
realLength = length;
return this;

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

private static void quicksort_loop(Object[] a, int lo, int hi, Comparator c) {
final ArrayList<int[]> stack = new ArrayList<int[]>(16);
int[] entry = new int[2];
entry[0] = lo;

entry[1] = hi;

while (!stack.isEmpty() || entry != null) {

if (entry == null) {
entry = stack.remove(stack.size() - 1);

}
lo = entry[0];
hi = entry[1];

int midi = 1o + (hi - lo) / 2;
Object mid = al[midil;

Object ml;

Object m3;

// do median of 7 if the array is over 200 elements.
if ((hi - lo) >= 200) {
int t = (hi - lo) / 8;

ml = med3(allo + t], allo + t * 2], a[lo + t * 3], c);
m3 = med3(a[midi + t], almidi + t x 2], almidi + t * 3], c);
} else {

// if it's less than 200 do median of 3
int t = (hi - lo) / 4;

ml = allo + tl;

m3 = almidi + t];

mid = med3(ml, mid, m3, c);

if (hi - lo >= 63) {

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Fourth problem: JRuby’s core library
isn’t amenable to optimisations

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

private static void quicksort_loop(Object[] a, int lo, int hi, Comparator c) {
final ArrayList<int[]> stack = new ArrayList<int[]>(16);
int[] entry = new int[2];
entry[0] = lo;

entry[1] = hi;

while (!stack.isEmpty() || entry != null) {

if (entry == null) {
entry = stack.remove(stack.size() - 1);

}
lo = entry[0];
hi = entry[1];

int midi = 1o + (hi - lo) / 2;
Object mid = al[midil;

Object ml;

Object m3;

// do median of 7 if the array is over 200 elements.
if ((hi - lo) >= 200) {
int t = (hi - lo) / 8;

ml = med3(allo + t], allo + t * 2], a[lo + t * 3], c);
m3 = med3(a[midi + t], almidi + t x 2], almidi + t * 3], c);
} else {

// if it's less than 200 do median of 3
int t = (hi - lo) / 4;

ml = allo + tl;

m3 = almidi + t];

mid = med3(ml, mid, m3, c);

if (hi - lo >= 63) {

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

The same problems apply to Rubinius,
even though the core library is mostly
written in Ruby

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

def isort!(left, right)

1= left+1
while i < right
J =1
while j > left
jp =73 -1
ell = at(jp)
el2 = at(j)
cmp = (ell <=> el2)

break unless cmp > 0
self[j] = ell
self[jp] = el2
j=1]p

end

1+=1

end
end

Copyright © 2016, Oracle and/or its affiliates. All rights reserv

ed.

Fixnumx Fixnum::compare(STATE, Fixnumk other) {
native_int left = to_native();
native_int right = other—->to_native();
if(left == right) {

return Fixnum::from(0);
} else if(left < right) {
return Fixnum::from(-1);
} else {
return Fixnum::from(1);
}
¥

®
ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

public static native void arraycopy(Object src, int srcPos,
Object dest, int destPos,
int length);

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Interlude: Truffle and Graal

ORACLE

Hotspot

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Hotspot

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Hotspot

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Hotspot

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

X +y * z

ORACLE

load local x
load local vy
load local z

call :*
call :+

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

pushq
movq
mov(
mov(
mov(
mov(
mov1l
mov(
imull
movq
addl
popq
ret

%rbp

%rsp, %rbp
%rdi, -8(%rbp)
%rsi, -16(%rbp)
%rdx, -24(%rbp)
-16(%rbp), %rax
»eax, xedx
-24(%rbp), %rax
»edx, %eax
-8(%rbp), %rdx
%edx, %eax

%rbp

load local x
load local y
load local z

call :*
call :+

OR Cl—e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Hotspot

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle

Hotspot

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

AST Interpreter
Uninitialized Nodes

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rulethem all. In Proceedings of Onward!, 2013.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Node Rewriting
for Profiling Feedback

' >

Node Transitions

~

Uninitialized Integer

-
-
e

-

AST Interpreter
Uninitialized Nodes

Double

-
o
o
-
-
...........

String s

Generic
J

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rulethem all. In Proceedings of Onward!, 2013.

c ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@NodeInfo(shortName = "+")
public abstract class SLAddNode extends SLBinaryNode {

public SLAddNode(SourceSection src) {
super(src);

}

@Specialization(rewriteOn = ArithmeticException.class)
protected long add(long left, long right) {
return ExactMath.addExact(left, right);

}

@Specialization

@TruffleBoundary

protected BigInteger add(BigInteger left, BigInteger right) {
return left.add(right);

}

@Specialization(guards = "isString(left, right)")

@TruffleBoundary

protected String add(Object left, Object right) {
return left.toString() + right.toString();

}

protected boolean isString(Object a, Object b) {
return a instanceof String || b instanceof String;

}

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@NodeInfo(shortName = "eval")
public abstract class SLEvalBuiltin extends SLBuiltinNode {

@SuppressWarnings("unused")

@Specialization(guards = {
"stringskEqual(mimeType, cachedMimeType)",
"stringskEqual(code, cachedCode)"

3

public Object evalCached(VirtualFrame frame,
String mimeType, String code,
@Cached("mimeType") String cachedMimeType,
@Cached("code") String cachedCode,
@Cached("create(parse(mimeType, code))") DirectCallNode callNode) {

return callNode.call(frame, new Object[]{});

}

@TruffleBoundary

@Specialization(contains = "evalCached")

public Object evalUncached(String mimeType, String code) {
return parse(mimeType, code).call();

}

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compilation using
Partial Evaluation

' >

AST Interpreter

Rewritten Nodes Compiled Code

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rulethem all. In Proceedings of Onward!, 2013.

RCI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

RUBYCONF O3

codon.com/compilers-for-free

Presentation, by Tom Stuart, licensed under a Creative Commons Attribution ShareAlike 3.0

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 55

Node Rewriting Compilation using
for Profiling Feedback Partial Evaluation

| > | >

Node Transitions

Uninitialized Integer

.
.
e
P
...................

AST Interpreter

— AST Interpreter
Uninitialized Nodes Sting 2

Double .~ Rewritten Nodes

.
.
.
-
-
...........

Compiled Code

Generic

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rulethem all. In Proceedings of Onward!, 2013.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Deoptimization
to AST Interpreter

' >

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rulethem all. In Proceedings of Onward!, 2013.

ORACLE

03/06/2016 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Node Rewriting to Update Recompilation using
Profiling Feedback Partial Evaluation

' > ' >

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rulethem all. In Proceedings of Onward!, 2013.

ORACLE

03/06/2016 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Internal/Restricted/Highly Restricted

Deoptimization
to AST Interpreter

=

Node Rewriting to Update
Profiling Feedback

| >

Recompilation using
Partial Evaluation

| >

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rulethem all. In Proceedings of Onward!, 2013.

ORACLE

03/06/2016 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Internal/Restricted/Highly Restricted

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

60

ORACLE

Frequently executed call

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

61

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

62

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

63

ORACLE

Biginteger
()

int
; .

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

64

Biginteger

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

65

X +y * z

ORACLE

load local x
load local vy
load local z

call :*
call :+

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

pushq
movq
mov(
mov(
mov(
mov(
mov1l
mov(
imull
movq
addl
popq
ret

%rbp

%rsp, %rbp
%rdi, -8(%rbp)
%rsi, -16(%rbp)
%rdx, -24(%rbp)
-16(%rbp), %rax
»eax, xedx
-24(%rbp), %rax
»edx, %eax
-8(%rbp), %rdx
%edx, %eax

%rbp

X +y * z

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Will | be able to use Truffle
and Graal for real?

ORACLE

}

Truffle —— Jgva

JVMCI
(JVM Compiler Interface)

OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Ruby

}

= via Maven etc

\

} Java 9

OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Account Sign Out Help Country v Communities ¥ lama... ¥ [wantto... v Search Q

Products Solutions Downloads Store Support Training Partners About |OTN

Oracle Technology Network > Oracle Labs > Programming Languages and Runtimes > Downloads

Parallel Graph Analytics Overview ’ Java JavaScript‘ Downloads | Learn More

Programming Languages and
Runtimes

Oracle Labs GraalVM & Truffle/JS Downloads

Thank you for downloading this release of the Oracle Labs GraalVM & Truffle/JS. With this release,
one can execute Java applications with Graal, as well as JavaScript applications with our Truffle-
based JavaScript engine.

Thank you for accepting the OTN License Agreement; you may now download this software.

Preview for Linux (v0.5)
#® Preview for Mac OS X (v0.5)

How to install GraalVM

Unpack the downloaded *.tar.gz file on your machine. You can then use the java and the trufflejs
executables to execute Java and Javascript programs. Both are in the bin directory of GraalVM.
Typically, you want to add that directory to your path.

More detailed getting started instructions are available in the README file in the download.

About this OTN Release

Oracle Labs GraalVM & Truffle/JS is a research artifact from Oracle Labs, whereas the current OTN
release is a technology preview version of it. Henceforth, this release is intended for information
purpose only, and may not be incorporated into any contract. This is not a commitment to deliver any
material, code, or functionality to Oracle products, and thus should not be relied upon in making any
purchase decisions. The development, release and timing of any features or functionality described
for products of Oracle remains at the sole discretion of Oracle.

WARNING: This release contains older versions of the JRE and JDK that are provided to help O t l l ra a
developers debug issues in older systems. They are not updated with the latest security patches and

are not recommended for use in production.

III

ORACLE

03/06/2016 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

How Truffle solves the problem
of optimising Ruby

ORACLE

First problem: JRuby’s core library is
megamorphic

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Node Rewriting
for Profiling Feedback

| >

Node Transitions

Uninitialized Integer

.
.
-
-
so®
...................

AST Interpreter
Uninitialized Nodes

AST Interpreter

Double Rewritten Nodes

.
.
-
-
............

Generic

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rulethem all. In Proceedings of Onward!, 2013.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Uninitialized Integer

..‘-.
'.'.‘
-
.'...
-

Generic

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rulethem all. In Proceedings of Onward!, 2013.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@Specialization(rewriteOn = ArithmeticException.class)
public int add(int a, int b) {

return ExactMath.addExact(a, b);
}

@Specialization(rewriteOn = ArithmeticException.class)
public long add(long a, long b) {

return ExactMath.addExact(a, b);
}

@Specialization
public Object addwithOverflow(long a, long b) {

return fixnumOrBignum(BigInteger.valueOf(a).add(BigInteger.value0f(b)));
}

@Specialization

public double add(long a, double b) {
return a + b;

}

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Second problem: JRuby’s core library is
stateless

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rulethem all. In Proceedings of Onward!, 2013.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@CoreMethod(names = "send", needsBlock = true, rest = true, required = 1)
public abstract static class SendNode extends CoreMethodArrayArgumentsNode {

@Child private CallDispatchHeadNode dispatchNode;

public SendNode(RubyContext context, SourceSection sourceSection) {
super(context, sourceSection);
dispatchNode = new CallDispatchHeadNode(context, true,
MissingBehavior.CALL_METHOD_MISSING);
}

@Specialization
public Object send(VirtualFrame frame, Object self, Object name,

Object[] args, DynamicObject block) {
return dispatchNode.call(frame, self, name, block, args);

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

send :bar

send :foo

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

80

ORACLE

send :bar

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

81

public static class IntegerArrayBuilderNode extends ArrayBuilderNode {
private final int expectedLength;

public IntegerArrayBuilderNode(RubyContext context, int expectedLength) <{
super(context);
this.expectedLength = expectedLength;

}

@Override
public Object start() {

return new int[expectedLength];
¥

c ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Third problem: JRuby’s core library is
very deep

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

send :bar

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

84

Fourth problem: JRuby’s core library isn’t
amenable to optimisations

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@CoreMethod(names = "sort", needsBlock = true)
public abstract class SortNode extends ArrayCoreMethodNode {

@Child private CallDispatchHeadNode compareDispatchNode;

@ExplodeLoop

@Specialization

public DynamicObject sortVeryShort(VirtualFrame frame, DynamicObject array) {
final int size = getSize(array);

// Copy with a exploded loop for PE

for (int i = @; i < getContext().getOptions().ARRAY_SMALL; i++) {
if (i < size) {
store.set(i, originalStore.get(i));
}

}

// Selection sort — written very carefully to allow PE

for (int i = 0; i < getContext().getOptions().ARRAY_SMALL; i++) {
if (i < size) {
for (int j = i + 1; j < getContext().getOptions().ARRAY_SMALL; j++) {
if (j < size) {

final Object a = store.get(i);

final Object b = store.get(j);

if (((int) compareDispatchNode.call(frame, b, "<=>", null, a)) < 0) {
store.set(j, a);
store.set(i, b);

}

return createArray(getContext(), store, size);

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@Exp lodeLoop

// Selection sort - written very carefully to allow PE

for (int i = 0; i < getContext().getOptions().ARRAY_SMALL; i++) {
if (i < size) {
for (int j = i + 1; j < getContext().getOptions().ARRAY_SMALL; j++) {
if (j < size) {

final Object a = store.get(i);

final Object b = store.get(j);

if (((int) compareDispatchNode.call(frame, b, "<=>", null, a)) < 0) {
store.set(j, a);
store.set(i, b);

}

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

A simple example

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

def min(a, b)

[a, b].sort[0O]

end

puts min(2, 8)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

89

ORACLE

puts [2, 8].sort[0]

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

90

ORACLE

to
tl
t2
t3

2 <=> 38

[tl, t2]

puts t3[0]

to <0 72 2 : 8
to > 0 2 8 @ 2

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

91

ORACLE

t0 = 2 <=> 38
tl = tO < 0 ?7 2 3
+9 — +Q > (O 2?2 Q D)
C 4 C UV - \4 o |\ A
2 — [+1 1
co [C1 CZ]

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

92

ORACLE

to
tl

to <0 72 2 : 8

puts tl

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

93

ORACLE

"
tl = -1<0 7?7 2 : 8

puts tl

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

94

ORACLE

tl = true ? 2

puts tl

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

95

ORACLE

puts tl

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

96

ORACLE

ot

=
I

NY

puts 2

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

97

ORACLE

puts 2

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

98

ORACLE

to
tl

a <=>D
tO <0 72 a: b

puts tl

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

99

£ = 5 <=> b
tl = (a <=>Db) <0 ?2 a : b

puts tl

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 100

puts (a <=>Db) <0 72 a : Db

OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 101

puts (a <=> b)) <O 2 a : b

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 102

A deliberately extreme example

ORACLE

module Foo
def self.foo(a, b, c)
hash = {a: a, b: b, c: c}
array = hash.map { |k, v| v }
x = array[0]
y = [a, b, c].sort[1]
X +y
end
end

class Bar
def method_missing(method, *args)
if Foo.respond_to?(method)
Foo.send(method, *args)
else
0
end
end
end

bar = Bar.new

loop do
start = Time.now
1_000_000.times do
bar.foo (14, 8, 6)
end
puts lime.now - start
end

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

module Foo
def self.foo(a, b, c)
hash = {a: a, b: b, c: c}
array = hash.map { |k, vl v }
x = array[0]
y = [a, b, c].sort[1]

class Bar
Xty def method_missing(method, *args)
end if Foo.respond_to?(method)
end Foo.send(method, *args)
else
0
end
end
end

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

bar = Bar.new

loop do
start = lime.now
1_000_000.times do
bar.foo(14, 8, 6)
end
puts lime.now - start
end

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

module Foo
def self.foo(a, b, c)
hash = {a: a, b: b, c: c}
array = hash.map { |k, v| v }
x = array[0]
y = [a, b, c].sort[1]
X +y
end
end

class Bar
def method_missing(method, *args)
if Foo.respond_to?(method)
Foo.send(method, *args)
else
0
end
end
end

bar = Bar.new

loop do
start = Time.now
1_000_000.times do
bar.foo (14, 8, 6)
end
puts lime.now - start
end

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

module Foo
def self.foo(a, b, c)
hash = {a: a, b: b, c: c}
array = hash.map { |k, v| v }

x = array[0] bar = Bar.new
y = [a, b, c].sort[1]
*ry loop do

end

t = Time.now

end 1_000-%00.times do
clags Bar bar.foo (14, 8, 6)
def method_missing(method, *args) end
if Foo.respond_to?(method) puts lime.now - start
Foo.send(method, *args) end
else
0
end
end
end

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

module Foo

self.foo(a, b, c)

hash = {a: a, b: b, c: c}

array = hash.map { |k, v| v }

x = array[0] bar = Bar.new

= [a, b, c].sort[1]

Ty loop do

t = lime.now

1_000_™O.times do
bar.foo(14, 8, 6)

od_missing(method, *args) end
if Foo.Mgspond_to?(method) puts lime.now - start
Foo.send(method, *args) end
else
0
end
end

end

O c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

self.foo(a, b, c)

hash = {a: a, b: b, c: c}

array = hash.map { |k, v| v }

x = array[0] bar = Bar.new

= [a, b, c].sort[1]

bar.foo (14, 8, 6)
end
puts lime.now - start
end

O c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

self.foo(a, b, c)

hash = {a: A, b: b, c: c}
array = hasihs T VI

bar = Bar.new

bar.foo (14, 8, 6)
end
puts lime.now - start
end

®
ORACI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

self.foo(a, b, c)

hash = {a: A, b: b, c: c}
array = hasihs T VI

bar = Bar.new

bar.foo (14, 8, 6)
end
puts lime.now - start
end

end e |
G
end :; :; P
ORACI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

w

Speedup relative to
baseline implementation (s/s)
N

-t

2.2.2 jruby-1.7.20-indy rbx-2.5.5 topaz-dev

: ‘ Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

1000

900
800
700
600
500
400
300
200
100

(s/s) uoiyejuswa|dwi sul@seq
0} 9Alejal dnpeadg

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

g
%
O

ORACLE

17769 FixedGuard(!=false) TransferTolnterpreter

/"

17051 Loa%inéexed

1705 nsafeLoad | q;%g ==

17772 FixedGuard(!=false) TransferTolnterpreter

17775 FixedGuard(!=false) TransferTolnterpreter

1§g§g gox |

17602 Return

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Node

ORACLE

17769 FixedGuard(!=false) TransferTolnterpreter

/"

17051 Loa%inéexed

1705 nsafeLoad | q;%g ==

17772 FixedGuard(!=false) TransferTolnterpreter

17775 FixedGuard(!=false) TransferTolnterpreter

1§g§g gox |

17602 Return

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Control
flow

Node

ORACLE

17769 FixedGuard(!=false) TransferTolnterpreter

/"

17051 Loa%inéexed

1705 nsafeLoad | q;%g ==

17772 FixedGuard(!=false) TransferTolnterpreter

17775 FixedGuard(!=false) TransferTolnterpreter

1@5@ gox |

17602 Return

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Data
flow

183880

17602 Return

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

movabs 0x11e2037a8, %rax ; {oop(a ’java/lang/Integer’ = 22)}

retq

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

C extensions

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

C extensions are a hack to workaround
performance, but now they stop us
really fixing performance

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

A lot of this has been about removing
barriers to the excellent optimisations
we already have

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

def clamp(num, min, max)
min, num, max].sort[1]
end

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

VALUE psd_native_util_clamp(VALUE self, VALUE r_num, VALUE r_min, VALUE r_max) {

int num = FIX2INT(r_num);
int min = FIX2INT(r_min);
int max = FIX2INT(r_max);

return num > max ? r_max : (num < min ? r_min : r_num);

}

®
ORACI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

def cmyk_to_rgb(c, m, vy, k)
Hash[{
r: (65535 - (c % (255 - k) + (k << 8))) >> 8,
g: (65535 — (m x (255 - k) + (k << 8))) >> 8,
b: (65535 — (v % (255 - k) + (k << 8))) >> 8
}.map { |k, v| [k, Util.clamp(v, @, 255)] }]
end

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

cmyk to rgb

psd_ native util clamp

FIX2INT

: ‘ Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 126

cmyk to rgb

psd_ native util clamp

FIX2INT

: ‘ Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 127

C Extension Performance for psd_native and oily_png

w
(63

w
o

N
&)

N
o

RN
@)}

RN
o
I

Average Speedup Relative to MRI
Without C Extension (s/s)
1

Matthias Grimmer, Chris Seaton, Thomas Wuerthinger, Hanspeter Moessenboeck:
Dynamically Composing Languages in a Modular Way: Supporting C Extensions for Dynamic Languages
Modularity '14 Proceedings of the 14th International Conference on Modularity

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Conclusions

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

The blocker for performance of idiomatic
Ruby code is the core library, not basic
language features

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

This extends to everything that forms a
barrier — including C extensions

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Specialisation, splitting, inlining, partial
evaluation, inline caching are all
solutions to this problem

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle makes it easy to add these to a
language implementation

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Can result in an order of magnitude
performance increase with reasonable
effort

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Acknowledgements

Benoit Daloze
Kevin Menard
Petr Chalupa

Oracle Labs
Danilo Ansaloni
Stefan Anzinger
Daniele Bonetta
Matthias Brantner
Laurent Daynes
Gilles Duboscq
Michael Haupt
Christian Humer
Mick Jordan
Peter Kessler
Hyunjin Lee
David Leibs

Tom Rodriguez
Roland Schatz
Chris Seaton
Doug Simon
Lukas Stadler

ORACLE

Oracle Labs (continued)
Michael Van de Vanter
Adam Welc

Till Westmann

Christian Wimmer
Christian Wirth

Paul Wogerer

Mario Wolczko

Andreas WoR

Thomas Wirthinger

Oracle Labs Interns
Shams Imam
Stephen Kell

Gero Leinemann
Julian Lettner
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Oracle Labs Alumni
Erik Eckstein
Christos Kotselidi

JKU Linz

Prof. Hanspeter Md&ssenbdck
Josef Eisl

Thomas Feichtinger
Matthias Grimmer
Christian Haub
Josef Haider
Christian Hube
David Leopoltsederr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

University of Edinburgh
Christophe Dubach

Juan José Fumero Alfonso Ranjeet
Singh

Toomas Remmelg

LaBRI
Floréal Morandat

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

University of California, Irvine

Prof. Michael Franz
Codrut Stancu

Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Romand Tsegelskyi
Prahlad Joshi

Petr Maj Lei Zhao

T. U. Dortmund

Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Prof. Duncan Temple Lang

Nicholas Ulle

136

Safe Harbor Statement

The precedingis intended to provide some insightinto a line of research in Oracle Labs. It
isintended for information purposes only, and may not be incorporated into any contract.
It is nota commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. Oracle reserves the right to alter its
development plans and practices at any time, and the development, release, and timing
of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

: ‘ CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Integrated Cloud

Applications & Platform Services

ORACLE

ORACLE

