Ruby’s Core Gem &

Chris Seaton

RubyConf 2022

The big idea up front

static VALUE
rb_f_loop(VALUE self)
{

RETURN_SIZED_ENUMERATOR(self, 0, 0, rb_f_loop_size);
return rb_rescue2(loop_1i, (VALUE)®, loop_stop, (VALUE)®, rb_eStopIteration, (VALUE)O);

static VALUE
loop_1i(VALUE _)
{
ForN(;N
rb_yield_0(0, 0);
}

return Qnil;

o060

def loop
return to_enum(:loop) { Float::INFINITY } unless block_given?

begin

while true
yield

end

rescue StopIteration => si
si.result

end

end

Context on me and my work

e From Cheshire in the UK (like the cat)

e PhD in compiling Ruby

e Founded TruffleRuby

e Formerly Oracle Labs, now Shopify which is a supportive place with great people
e Interested in optimising idiomatic Ruby code

e | ead a British cavalry squadron in my spare time

(interested in meeting other Ruby veterans)

Ruby's tower of libraries

Gems and user core

Standard library

Core library

Language

Gems and user core

Ruby code

Standard library

C code

Core library

Language

Language

A smaller number of things provided by the
Ruby language itself

Classes, modules, methods

Method calls

if, while, case, and, &&

Very little else is provided by the language

foo.bar if foo && bar

Array, Hash

Numbers, strings

Basic control structures - #loop, #each
Automatically available - no require
Implemented as a 'C extension

About 2250 methods
Core library

{foo: x, bar: y}.values.sort.first + 1

Standard library

Needs to be required (some exceptions)
But available without installing anything
We won't worry about it much in this talk
Being ‘lifted’ in the tower

require 'json'

JSON.generate({foo: [1, 2, 3]})

Gems and user core

Standard library (Gemified)

Core library

Language

Gems and user core

Ruby code loaded at runtime from outside
the interpreter

Can be from a gem or code in your repo
Makes a difference to us as programmers,
but doesnt really make any difference to
the Ruby VM

class ArticlesController < ApplicationController
def index

@articles = Article.all

end

end

Good things about core as it is

Always available

cant go wrong

can be used to build bigger things like RubyGems
Available instantly
Can use VM internals to do things you can't do in Ruby
Compilers can be taught about it

will explain later!

~—

~ Badthings about core as it is

g

It's far too big

No Ruby code that you can read

No Ruby code that you can debug

No Ruby code to profile, coverage, etc

All 'C extension’' code..

N’

- Badthings about C extension code

v e Didyou know C code can be worse for performance than
Ruby code?

will explain later

Get the best of both worlds?

Gems and user core

Standard library

Core library

Language

Gems and user core

Standard library

Core

‘Primitives'

Language

Best of both worlds

Bulk of code in Ruby
can be read, understood, debugged
can be optimised by the Ruby VM
Small set of underlying ‘primitives’ as ‘C extensions’
can teach the compiler about them as there's not many

available instantly

Ruby implementations already do this

MRI (CRuby) a tiny bit

JRuby a bit more

TruffleRuby a bit more still
(We'll talk about Rubinius later)

How MRI (CRuby) does it

module Kernel

def tap

yield(self)
self
end

end

module Kernel

def frozen?

Primitive.cexpr! 'rb_obj_frozen_p(self)'’
end

end

VALUE

rb_obj_frozen_p(VALUE obj)
{

return RBOOL(OBJ_FROZEN(obj));

}

2194 core methods in C
64 core primitives in C
31 instances of inline C
7 special ‘'optimised’ core methods
101 core methods in Ruby

How TruffleRuby does it

module Kernel

def tap

yield(self)
self
end

end

@
class Hash

def key(value)
each_pair do |k,v|
return k if v == value
end
nil
end

def to_a
ary = []
each_pair do |key,value|
ary << [key, value]
end

ary
end

end

611 core methods in Java
353 core primitives In Java
2386 core methods in Ruby

JRuby does it too

L]
class Integer
def times

=)
while 1 < self do

yield i
1 += 1
end
end

end

Advantages of a Ruby core

Advantage - understandability

You can browse the Ruby code to understand it

Answer your own questions about what core methods really do
Use your normal debugger, coverage, profiler tools

No longer a ‘black box

Advantage - shared code

e MRI, TruffleRuby, JRuby, Artichoke, whatever comes next, could all share
the same core library

e FEach would implement a smaller set of primitives their own way

e VM people can focus on making the primitives work well

e Other people can focus on making the core library work well

Advantage - optimisation

static int
key_1(VALUE key, VALUE value, VALUE arg)
i

VALUE *args = (VALUE *)arg;

if (rb_equal(value, args[0])) {
args[1l] = key;
retubn STESIIOP:;

}
return ST_CONTINUE;

Advantage - optimisation

def key(value)
each_patir do |k,v|

return k if v == value
end
nil
end

Disadvantages of a Ruby core

Disadvantage - parse time

e Have to parse all this Ruby code at startup

e \We said it's better for optimisation, but that's only when the optimisations
have had time to run!

e People already have to do things like --disable=gems for command-line
tools to reduce startup time, this would make it much worse

Disadvantage - parse time - mitigate it

e MRIembeds the YARV bytecode, not parse it
e TruffleRuby embeds the objects into the executable, not parse it
e TruffleRuby can start up more quickly than MRI due to this

Disadvantage - memory

e Ruby code is quite a bit bigger than compiled C code
e The profiles, inlining, and splitting, and things that make Ruby code faster

also take up more memory
e The optimisation that we say we get takes up even more memory still

Disadvantage - memory - mitigate it

e Don't actually really have any great ways to mitigate it
e Does anyone else? Open to ideas
e At leastits per-process, not per-user

One alternative

Sulong - interpret C code with profiling
SUIUng e Sulongisa Cinterpreter and JIT

e TruffleRuby uses it to run C extensions
e Requires some truly heroic work to restore the

performance of native C code - so slow to

warm up

A practical demonstration

def foo(hash, value)
hash.key(value)
end

hash' = {a: 14}

Loop do
foo(hash, 14)
end

0

[engine]
[engine]
[engine]
[engine]
[engine]

def foo(hash, value)

hash.key(value)
end

hash = {a: 14}

Lloop do
foo(hash, 14)
end

Inline start Object#foo

Inlined Hash#key

Inlined Hash#each_pair <split-1512>
Inlined block in Hash#key

Inline done Object#foo

"B Jalvo
e

[|
v [

oy

T

1110 InstanceOf a¥¥ org.truffleruby.core.symbol. RubySymbol

A potential way forward

Move the majority of core into Ruby

Leave a smaller, better defined set of primitives

Use TruffleRuby's core as a starting point

Teach our compilers and static analysis tools more about these primitives
A smaller, more manageable, more analysable, Ruby

But works exactly the same as now for application developers

Does it literally need to be a gem?

Attribution to Rubinius

e A lot of TruffleRuby's core library originated from

Rubinius, but has been maintained by us for a
few years now

e Excellent work by Evan Phoenix, Brian Shirali,
and others

An even more radical idea

ATy
& ‘

def rb_str_new_frozen(value)
if value.frozen?
value
else
value.dup.freeze
end
end

! 4 .

VALUE rb_str_new_frozen(VALUE value) {

}

return RUBY_CEXT_INVOKE("rb_str_new_frozen", value);

Conclusions

Gems and user core

Standard library

Gems and user core

Core library

Standard library

Core

Language

Primitives

Language

Gems and user core

Standard library

Gems and user core

Core library

Standard library

Core

Language

Primitives

Language

Is it a good idea?

~5& s
Understandability

([]
. e |Impact on startup time
: gzzrjasg:ti{ (we have a solution)
o« O timgisabili?c/ e |mpact on memory usage
X . y (not sure we have a solution
e Analysability

Surely worth trying

e We have a core in TruffleRuby we could start trying with
e Going to become more relevant as MRI gets more sophisticated
e The future of Ruby

What else to check out

* TRUFFLE
" RUBY

github.com/oracle/truffleruby/tree/master/src/main/ruby/truffleruby/core
graalvm.org/ruby

chrisseaton.com/truffleruby

|
é ORACLE

A
E Splitting;:
' The Crucial Optimization for Ruby Blocks

Benoit Daloze |sum_t0‘ |1.step(3) { il p i }|
RubyConf 2022 S
(¢ 1i1 sum += 3)| [111 p i3]

Benoit Daloze's talk today at 3pmin A

Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby
Applications

Sophie Kaleba
S.Kaleba@kent.ac.uk
University of Kent
United Kingdom

Richard Jones
R.E.Jones@kent.ac.uk
University of Kent
United Kingdom

Abstract

Applications written in dynamic languages are becoming
larger and larger and companies increasingly use multi-
million line codebases in production. At the same time, dy-
namic languages rely heavily on dynamic optimizations, par-
ticularly those that reduce the overhead of method calls.

In this work, we study the call-site behavior of Ruby bench-
marks that are being used to guide the development of up-
coming Ruby implementations such as TruffleRuby and YJIT.
We study the interaction of call-site lookup caches, method
splitting, and elimination of duplicate call-targets.

We find that these optimizations are indeed highly effec-
tive on both smaller and large benchmarks, methods and
closures alike, and help to open up opportunities for fur-
ther ontimizatione <1ich ac inlinine However we <how that

Octave Larose
O.Larose@kent.ac.uk
University of Kent
United Kingdom

Stefan Marr
s.marr@kent.ac.uk
University of Kent

United Kingdom

ACM Reference Format:
Sophie Kaleba, Octave Larose, Richard Jones, and Stefan Ma-
Who You Gonna Call: Analyzing the Run-time Call-Site B¢’
Ruby Applications. In Proceedings of the 18th ACM SIGF
national Symposium on Dynamic Languages (DLS "22), I
2022, Auckland, New Zealand. ACM, New York, NY, U¢
https://doi.org/10.1145/3563834.3567538

1 Introduction

Dynamic languages such as JavaScript, PHP, Pyth¢
Ruby are used in industry to build a wide range of sys._
including application backends. Their dynamic language fes
tures support rapid application development, but require
run-time compilation and optimization to achieve good per-

def sweep
each_object do |obj|
if object_marked? (obj)
unmark_object obj
else
reclaim_address obj.address
end
end

end

rbx/lib/mark_sweepgc.rb:79-87

ruby-compilers.com/rubinius/#history

rubybib.org

Academic writing on the Ruby programming language

i The Ruby Bibliography

The Ruby programming language hasn't historically been the subject of much research, either in industry or academia. A lot of recent systems research has
used languages like C, C++ and Java. Contemporary programming language research often uses languages like Java, Scala, Racket and Haskell. Modern
research into VMs, compilers and garbage collectors is often based on Java or recently Python.

However there are now a growing number of research projects using Ruby. On this page we list theses and peer-reviewed papers and articles that cover
Ruby implementation or use Ruby, including alternative implementations such as JRuby.

Also see the Ruby Compiler Survey.

Virtual Machines and Compilers
S. Kaleba, O. Larose, R. Jones, S. Marr. Who You Gonna Call: Analyzing the Run-time Call-Site Behavior of Ruby Applications. In Proceedings of the 18th
Symposium on Dynamic Languages (DLS), 2022. 'TruffleRuby

M. Chevalier-Boisvert, N. Gibbs,]J. Boussier, S. Wu, A. Patterson, K. Newton,] Hawthorn. YJIT: a basic block versioning JIT compiler for CRuby. In

ey a0 ~ .2 NSy | SEissleciieesieopiodey witiamias i T L 1 - - Ao & P e o & R s e E o

