
Ruby’s Core Gem
Chris Seaton

RubyConf 2022

The big idea up front

Context on me and my work

● From Cheshire in the UK (like the cat)

● PhD in compiling Ruby

● Founded TruffleRuby

● Formerly Oracle Labs, now Shopify which is a supportive place with great people

● Interested in optimising idiomatic Ruby code

● Lead a British cavalry squadron in my spare time

 (interested in meeting other Ruby veterans)

Ruby’s tower of libraries

Gems and user core

Standard library

Core library

Language

Gems and user core

Standard library

Core library

LanguageLanguage

Ruby code

C code

Gems and user core

Standard library

Core library

LanguageLanguage

● A smaller number of things provided by the
Ruby language itself

● Classes, modules, methods
● Method calls
● if, while, case, and, &&
● Very little else is provided by the language

Gems and user core

Standard library

Core library

LanguageLanguage

● Array, Hash
● Numbers, strings
● Basic control structures - #loop, #each
● Automatically available - no require
● Implemented as a ‘C extension’
● About 2250 methods

Gems and user core

Standard library

Core library

LanguageLanguage

● Needs to be required (some exceptions)
● But available without installing anything
● We won’t worry about it much in this talk
● Being ‘lifted’ in the tower

Gems and user core

Standard library (Gemified)

Core library

LanguageLanguage

Gems and user core

Standard library

Core library

LanguageLanguage

● Ruby code loaded at runtime from outside
the interpreter

● Can be from a gem or code in your repo
● Makes a difference to us as programmers,

but doesn’t really make any difference to
the Ruby VM

Good things about core as it is

● Always available
 can’t go wrong
 can be used to build bigger things like RubyGems

● Available instantly
● Can use VM internals to do things you can’t do in Ruby
● Compilers can be taught about it

 will explain later!

Bad things about core as it is

● It’s far too big

● No Ruby code that you can read

● No Ruby code that you can debug

● No Ruby code to profile, coverage, etc

● All ‘C extension’ code…

Bad things about C extension code

● Did you know C code can be worse for performance than

Ruby code?

 will explain later

Get the best of both worlds?

Gems and user core

Standard library

Core library

LanguageLanguage

Gems and user core

Standard library

LanguageLanguage

Core

‘Primitives’

Best of both worlds

● Bulk of code in Ruby

 can be read, understood, debugged

 can be optimised by the Ruby VM

● Small set of underlying ‘primitives’ as ‘C extensions’

 can teach the compiler about them as there’s not many

 available instantly

Ruby implementations already do this

● MRI (CRuby) a tiny bit

● JRuby a bit more

● TruffleRuby a bit more still

● (We’ll talk about Rubinius later)

How MRI (CRuby) does it

2194 core methods in C
64 core primitives in C
31 instances of inline C

7 special ‘optimised’ core methods
101 core methods in Ruby

How TruffleRuby does it

611 core methods in Java
353 core primitives in Java
2386 core methods in Ruby

JRuby does it too

Advantages of a Ruby core

Advantage - understandability

● You can browse the Ruby code to understand it
● Answer your own questions about what core methods really do
● Use your normal debugger, coverage, profiler tools
● No longer a ‘black box’

Advantage - shared code

● MRI, TruffleRuby, JRuby, Artichoke, whatever comes next, could all share
the same core library

● Each would implement a smaller set of primitives their own way
● VM people can focus on making the primitives work well
● Other people can focus on making the core library work well

Advantage - optimisation

Advantage - optimisation

Disadvantages of a Ruby core

Disadvantage - parse time

● Have to parse all this Ruby code at startup
● We said it’s better for optimisation, but that’s only when the optimisations

have had time to run!
● People already have to do things like --disable=gems for command-line

tools to reduce startup time, this would make it much worse

Disadvantage - parse time - mitigate it

● MRI embeds the YARV bytecode, not parse it
● TruffleRuby embeds the objects into the executable, not parse it
● TruffleRuby can start up more quickly than MRI due to this

Disadvantage - memory

● Ruby code is quite a bit bigger than compiled C code
● The profiles, inlining, and splitting, and things that make Ruby code faster

also take up more memory
● The optimisation that we say we get takes up even more memory still

Disadvantage - memory - mitigate it

● Don’t actually really have any great ways to mitigate it
● Does anyone else? Open to ideas
● At least it’s per-process, not per-user

One alternative

Sulong - interpret C code with profiling

● Sulong is a C interpreter and JIT

● TruffleRuby uses it to run C extensions

● Requires some truly heroic work to restore the

performance of native C code - so slow to

warm up

A practical demonstration

A potential way forward

● Move the majority of core into Ruby
● Leave a smaller, better defined set of primitives
● Use TruffleRuby’s core as a starting point
● Teach our compilers and static analysis tools more about these primitives
● A smaller, more manageable, more analysable, Ruby
● But works exactly the same as now for application developers
● Does it literally need to be a gem?

Attribution to Rubinius

● A lot of TruffleRuby’s core library originated from
Rubinius, but has been maintained by us for a
few years now

● Excellent work by Evan Phoenix, Brian Shirai,
and others

An even more radical idea

Conclusions

Gems and user core

Standard library

Core library

LanguageLanguage

Gems and user core

Standard library

LanguageLanguage

Core

Primitives

Gems and user core

Standard library

Core library

LanguageLanguage

Gems and user core

Standard library

LanguageLanguage

Core

Primitives

Is it a good idea?

● Understandability
● Shareability
● Debugability
● Optimisability
● Analysability

● Impact on startup time
 (we have a solution)

● Impact on memory usage
 (not sure we have a solution

Surely worth trying

● We have a core in TruffleRuby we could start trying with
● Going to become more relevant as MRI gets more sophisticated
● The future of Ruby

What else to check out

github.com/oracle/truffleruby/tree/master/src/main/ruby/truffleruby/core

graalvm.org/ruby

chrisseaton.com/truffleruby

Benoit Daloze’s talk today at 3pm in A

ruby-compilers.com/rubinius/#history

rubybib.org

