


Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Turning	the	JVM	into	a	Polyglot	VM	with	Graal

Chris	Seaton
Research	Manager
Oracle	Labs
April	2017



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	following	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	information	purposes	only,	and	may	not	be	incorporated	into	any	
contract. It	is	not	a	commitment	to	deliver	any	material,	code,	or	functionality,	and	
should	not	be	relied	upon	in	making	purchasing	decisions.	Oracle	reserves	the	right	to	
alter	its	development	plans	and	practices	at	any	time,	and	the	development,	release,	and	
timing	of	any	features	or	functionality	described	in	connection	with	any	Oracle	product	or	
service	remains	at	the	sole	discretion	of	Oracle. Any	views	expressed	in	this	presentation	
are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Programming	languages



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 5



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 6



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 7



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 8

Computer	Language	Benchmarks	Game



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 9

Goal:

Computer	Language	Benchmarks	Game



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 10

Prototype	a	new	language

Parser	and	language	work	to	build	
syntax	tree	(AST),	AST	Interpreter

Write	a	“real”	VM

In	C/C++,	still	using	AST	interpreter,
spend	a	lot	of	time	implementing	
runtime	system,	GC,	…

People	start	using	it

Define	a	bytecode format	and	
write	bytecode interpreter

People	complain	about	performance

Write	a	JIT	compiler
Improve	the	garbage	collector

Performance	is	still	bad

Current situation How it should be



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 11

Prototype	a	new	language

Parser	and	language	work	to	build	
syntax	tree	(AST),	AST	Interpreter

Write	a	“real”	VM

In	C/C++,	still	using	AST	interpreter,
spend	a	lot	of	time	implementing	
runtime	system,	GC,	…

People	start	using	it

Define	a	bytecode format	and	
write	bytecode interpreter

People	complain	about	performance

Write	a	JIT	compiler
Improve	the	garbage	collector

Performance	is	still	bad

Prototype	a	new	language	in	Java

Parser	and	language	work	to	build	
syntax	tree	(AST)
Execute	using	AST	interpreter

People	start	using	it

And	it	is	already	fast

Current situation How it should be



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

The	GraalVM concept



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 13

The	Ruby	Logo	is	Copyright	(c)	2006,	Yukihiro	Matsumoto.	It	is	licensed	under	the	terms	of	the	Creative	Commons	Attribution-ShareAlike 2.5	agreement
JS	Logo	Copyright	(c)	2011	Christopher	Williams	<chris@iterativedesigns.com>,	MIT		licence

You	can	distribute	the	R	logo	under	the	terms	of	the	Creative	Commons	Attribution-ShareAlike 4.0	International	license	(CC-BY-SA	4.0)	or	(at	your	option)	the	GNU	General	Public	License	version	2	(GPL-2).



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 14

VM VM VM VM

Impl Impl Impl Impl



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 15

VM VM VM VM

Impl Impl Impl Impl



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 16

VM

Impl Impl Impl Impl



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 17

VM

Impl Impl Impl Impl



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 18

VM

Impl Impl Impl Impl



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

How	we	do	polyglot	in	GraalVM



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Ruby

JavaScript



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Ruby

JavaScript



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Ruby

JavaScript



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Ruby

JS



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Warms	up	and	then	
reports	iterations	per	

second

Random	inputs	stop	the	
whole	thing	being	totally	

optimised away



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

clamp in	Pure	Ruby

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

GraalVM JRuby+invokedynamic Ruby

O
pe

ra
tio

ns
	P
er
	S
ec
on

d



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

clamp in	Pure	Ruby

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

GraalVM JRuby+invokedynamic Ruby

O
pe

ra
tio

ns
	P
er
	S
ec
on

d

This	is	what	GraalVM is	giving	you	for
Ruby	before	we	even	start	talking	about
JavaScript



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Not	only	have	we	rewritten	
in	JavaScript,	but	the	

JavaScript	code	is	simpler	
than	the	Ruby



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

clamp in	Ruby	and	JavaScript	with	V8

0

50000

100000

150000

200000

250000

300000

350000

Ruby	(just	Ruby) Ruby	(Ruby	+	JS	with	V8)

O
pe

ra
tio

ns
	P
er
	S
ec
on

d



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

clamp in	Ruby	and	JavaScript	with	JRuby and	Rhino

0

100000

200000

300000

400000

500000

600000

JRuby+indy	(just	Ruby) JRuby+indy	(Ruby	+	JS	with	Rhino)

O
pe

ra
tio

ns
	P
er
	S
ec
on

d



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

clamp in	Ruby	and	JavaScript	with	JRuby and	Nashorn

0

100000

200000

300000

400000

500000

600000

JRuby+indy	(just	Ruby) JRuby+indy	(Ruby	+	JS	with	Rhino) JRuby+indy	(Ruby	+	JS	with	Nashorn)

O
pe

ra
tio

ns
	P
er
	S
ec
on

d



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

clamp in	Ruby	and	JavaScript	with	GraalVM

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

GraalVM	(just	Ruby) GraalVM	(Ruby	+	JS) JRuby+invokedynamic Ruby

O
pe

ra
tio

ns
	P
er
	S
ec
on

d



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

clamp in	all	configurations

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

10000000

GraalVM	(just	
Ruby)

GraalVM	(Ruby	
+	JS)

JRuby+indy	(just	
Ruby)

JRuby+indy	
(Ruby	+	JS	with	

Rhino)

JRuby+indy	
(Ruby	+	JS	with	

Nashorn)

Ruby	(just	Ruby) Ruby	(Ruby	+	JS	
with	V8)

O
pe

ra
tio

ns
	P
er
	S
ec
on

d



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

clamp in	all	configurations

1

10

100

1000

10000

100000

1000000

10000000

GraalVM	(just	
Ruby)

GraalVM	(Ruby	
+	JS)

JRuby+indy	(just	
Ruby)

JRuby+indy	
(Ruby	+	JS	with	

Rhino)

JRuby+indy	
(Ruby	+	JS	with	

Nashorn)

Ruby	(just	Ruby) Ruby	(Ruby	+	JS	
with	V8)

O
pe

ra
tio

ns
	P
er
	S
ec
on

d



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

How	Graal achieves	this



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Conventional	JVM	implementations	of	languages	work	by	emitting	
JVM	bytecode	– the	same	thing	that	the	Java	compiler	does



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

JIT



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

JIT



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot
Graal

JIT



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot
Graal



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot
Graal

Truffle



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Slightly	confusing	terminology…

• Graal is	a	new	JIT	compiler	for	the	JVM

• Graal VM	is	the	JVM,	with	Graal,	Truffle,	and	our	
languages	bundled	in	it

• Truffle	uses	Graal on	your	behalf



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 56

Guest	Language

JVM

Bytecode



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 57

Guest	Language

Compiler	internal	data	
structures,	optimisation passes,	
machine	code,	…

Graal



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 58

Guest	Language

Graal

Truffle

language	interpreter



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

The	very	basics	of	Truffle	and	Graal



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

x + y * z

+

x *

y z

load_local x
load_local y
load_local z
call *
call +

pushq %rbp
movq %rsp, %rbp
movq %rdi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rdx, -24(%rbp)
movq -16(%rbp), %rax
movl %eax, %edx
movq -24(%rbp), %rax
imull %edx, %eax
movq -8(%rbp), %rdx
addl %edx, %eax
popq %rbp
ret



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

x + y * z

+

x *

y z

load_local x
load_local y
load_local z
call *
call +

pushq %rbp
movq %rsp, %rbp
movq %rdi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rdx, -24(%rbp)
movq -16(%rbp), %rax
movl %eax, %edx
movq -24(%rbp), %rax
imull %edx, %eax
movq -8(%rbp), %rdx
addl %edx, %eax
popq %rbp
ret



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

x + y * z

+

x *

y z

load_local x
load_local y
load_local z
call *
call +

pushq %rbp
movq %rsp, %rbp
movq %rdi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rdx, -24(%rbp)
movq -16(%rbp), %rax
movl %eax, %edx
movq -24(%rbp), %rax
imull %edx, %eax
movq -8(%rbp), %rdx
addl %edx, %eax
popq %rbp
ret



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 66

codon.com/compilers-for-free

Presentation,	by	Tom	Stuart,	licensed	under	a	Creative	Commons	Attribution	ShareAlike 3.0	



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|20/04/2017

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update 
Profiling Feedback

Recompilation using
Partial Evaluation



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|20/04/2017 Oracle	Confidential	– Internal/Restricted/Highly	Restricted

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update 
Profiling Feedback

Recompilation using
Partial Evaluation



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 69



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 70

Frequently executed call



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 71



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 72

Frequently executed call



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 73



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 74



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

How	effective	is	this	in	the	extreme?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Looking	at	these
loops	here



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

What	is	this	for?



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• We’re	not	really	suggesting	that	people	routinely	write	alternate	methods	
in	different	languages



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• We’re	not	really	suggesting	that	people	routinely	write	alternate	methods	
in	different	languages

• More	about	removing	the	consideration	of	performance	from	the	decision	
if	you	do	want	to	combine	languages



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• Could	make	all	library	ecosystems	available	to	all	applications
• May	be	useful	for	unifying	a	front-end	and	back-end
• May	be	useful	in	handling	legacy	applications	and	incremental	changes	in	
implementation	language



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

How	to	use	GraalVM



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

GraalVM – everything	in	one	package	today
• Includes:

– JVM	(RE	or	DK)
– Java
– JavaScript
– Ruby
– R
–More	in	the	future

• Binary	tarball release
• Mac	or	Linux



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Java	9	– runs	on	an	unmodified	JVM

Hotspot

Graal

Truffle

JS others…R

Java

C++



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Java	9	– runs	on	an	unmodified	JVM

Hotspot

Graal

Truffle

JS others…R

Java

C++
JVMCI

(JVM	Compiler	Interface)



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Java	9	– runs	on	an	unmodified	JVM

Hotspot

Graal

Truffle

JS others…Ruby

via	OTN,	Maven	etc

Java	9,	JEP	243



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Takeaways



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• Oracle	Labs	is	building	Graal VM	to	support	polyglot	programs	and	
programmers

• Extremely	high	performance	for	the	languages	on	their	own
• Completely	unprecedented	high	performance	for	language	
interoperability

• Will	work	on	an	unmodified	Java	9	JVM,	or	available	as	a	bundle	today
• Still	at	the	research	stage,	but	moving	towards	being	something	more	
than	that



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Where	to	find	more	information



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Search	for	‘graal otn’

www.oracle.com/technetwork/oracle-labs/program-languages



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Search	for	‘github graalvm’

github.com/graalvm



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

@chrisgseaton

github.com/graalvm

gitter.im/graalvm/graal-core

Search	‘otn graalvm’



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Acknowledgements
Oracle
Danilo	Ansaloni
Stefan	Anzinger
Cosmin	Basca
Daniele	Bonetta
Matthias	Brantner
Petr	Chalupa
Jürgen	Christ
Laurent	Daynès
Gilles	Duboscq
Martin	Entlicher
Brandon	Fish
Bastian	Hossbach
Christian	Humer
Mick	Jordan
Vojin	Jovanovic
Peter	Kessler
David	Leopoldseder
Kevin	Menard
Jakub	Podlešák
Aleksandar	Prokopec
Tom	Rodriguez

Oracle	(continued)
Roland	Schatz
Chris	Seaton
Doug	Simon
Štěpán	Šindelář
Zbyněk	Šlajchrt
Lukas	Stadler
Codrut	Stancu
Jan	Štola
Jaroslav	Tulach
Michael	Van	De	Vanter
Adam	Welc
Christian	Wimmer
Christian	Wirth
Paul	Wögerer
Mario	Wolczko
Andreas	Wöß
Thomas	Würthinger

JKU	Linz
Prof.	Hanspeter	Mössenböck
Benoit	Daloze
Josef	Eisl
Thomas	Feichtinger
Matthias	Grimmer
Christian	Häubl
Josef	Haider
Christian	Huber
Stefan	Marr
Manuel	Rigger
Stefan	Rumzucker
Bernhard	Urban

University	of Edinburgh
Christophe	Dubach
Juan	José	Fumero Alfonso
Ranjeet Singh
Toomas Remmelg

LaBRI
Floréal Morandat

University	of California,	Irvine
Prof.	Michael	Franz
Gulfem	Savrun	Yeniceri
Wei	Zhang

Purdue University
Prof.	Jan	Vitek
Tomas	Kalibera
Petr	Maj
Lei	Zhao

T.	U.	Dortmund
Prof.	Peter	Marwedel
Helena	Kotthaus
Ingo	Korb

University	of California,	Davis
Prof.	Duncan	Temple	Lang
Nicholas	Ulle

University	of Lugano,	Switzerland
Prof.	Walter	Binder
Sun	Haiyang
Yudi	Zheng

Oracle	Interns
Brian	Belleville	
Miguel	Garcia
Shams	Imam
Alexey	Karyakin
Stephen	Kell
Andreas	Kunft
Volker	Lanting
Gero	Leinemann
Julian	Lettner
Joe	Nash
David	Piorkowski
Gregor	Richards
Robert	Seilbeck
Rifat	Shariyar

Alumni
Erik	Eckstein
Michael	Haupt
Christos	Kotselidis
Hyunjin	Lee
David	Leibs
Chris	Thalinger
Till	Westmann



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	preceding	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	information	purposes	only,	and	may	not	be	incorporated	into	any	
contract. It	is	not	a	commitment	to	deliver	any	material,	code,	or	functionality,	and	
should	not	be	relied	upon	in	making	purchasing	decisions.	Oracle	reserves	the	right	to	
alter	its	development	plans	and	practices	at	any	time,	and	the	development,	release,	and	
timing	of	any	features	or	functionality	described	in	connection	with	any	Oracle	product	or	
service	remains	at	the	sole	discretion	of	Oracle. Any	views	expressed	in	this	presentation	
are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.



Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|




