


Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

AST	Specialisation and	Partial	Evaluation
for	Easy	High-Performance	Metaprogramming
1st	Workshop	on	Meta-Programming	Techniques	and	Reflection	(META)

Chris	Seaton
Research	Manager
Oracle	Labs
November	2016



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	following	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	information	purposes	only,	and	may	not	be	incorporated	into	any	
contract. It	is	not	a	commitment	to	deliver	any	material,	code,	or	functionality,	and	
should	not	be	relied	upon	in	making	purchasing	decisions.	Oracle	reserves	the	right	to	
alter	its	development	plans	and	practices	at	any	time,	and	the	development,	release,	and	
timing	of	any	features	or	functionality	described	in	connection	with	any	Oracle	product	or	
service	remains	at	the	sole	discretion	of	Oracle. Any	views	expressed	in	this	presentation	
are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.

3



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Outline
• We	are	using	a	novel	combination	of	techniques	to	create	high	
performance	implementations	of	existing	languages
– Truffle:	framework	for	writing	AST	interpreters	in	Java
– Graal:	new	dynamic	(JIT)	compiler	for	the	JVM	that	knows	about	Truffle

• We’ve	found	that	this	combination	of	tools	is	particularly	useful	for	easy,	
pervasive,	consistent,	high-performance	metaprogramming	
implementations
• We’ll	show	why	this	is	and	what	it	looks	like
• We’ll	suggest	what	properties	from	Truffle	and	Graal could	be	useful	to	
make	sure	future	language	implementation	systems	have

4



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Truffle	and	Graal

5



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

HotSpot

6



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

HotSpot

7



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

HotSpot

JIT

8



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

HotSpot

JIT

9



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

HotSpot
Graal

JIT

10



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

HotSpot
Graal

Truffle

JIT

11



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 12

The	Ruby	Logo	is	Copyright	(c)	2006,	Yukihiro	Matsumoto.	It	is	licensed	under	the	terms	of	the	Creative	Commons	Attribution-ShareAlike 2.5	agreement
JS	Logo	Copyright	(c)	2011	Christopher	Williams	<chris@iterativedesigns.com>,	MIT		licence

You	can	distribute	the	R	logo	under	the	terms	of	the	Creative	Commons	Attribution-ShareAlike 4.0	International	license	(CC-BY-SA	4.0)	or	(at	your	option)	the	GNU	General	Public	License	version	2	(GPL-2).

Truffle Truffle Truffle

Graal



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 13

Truffle Truffle Truffle

Graal



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Truffle	for	AST	interpreters

14



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

x + y * z

+

x *

y z

load_local x
load_local y
load_local z
call *
call +

pushq %rbp
movq %rsp, %rbp
movq %rdi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rdx, -24(%rbp)
movq -16(%rbp), %rax
movl %eax, %edx
movq -24(%rbp), %rax
imull %edx, %eax
movq -8(%rbp), %rdx
addl %edx, %eax
popq %rbp
ret

15



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

x + y * z

+

x *

y z

load_local x
load_local y
load_local z
call *
call +

pushq %rbp
movq %rsp, %rbp
movq %rdi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rdx, -24(%rbp)
movq -16(%rbp), %rax
movl %eax, %edx
movq -24(%rbp), %rax
imull %edx, %eax
movq -8(%rbp), %rdx
addl %edx, %eax
popq %rbp
ret

16



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

x + y * z

+

x *

y z

load_local x
load_local y
load_local z
call *
call +

pushq %rbp
movq %rsp, %rbp
movq %rdi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rdx, -24(%rbp)
movq -16(%rbp), %rax
movl %eax, %edx
movq -24(%rbp), %rax
imull %edx, %eax
movq -8(%rbp), %rdx
addl %edx, %eax
popq %rbp
ret

17



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

18



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

19



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Graal for	partial	evaluation

20



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

21



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 22

codon.com/compilers-for-free

Presentation,	by	Tom	Stuart,	licensed	under	a	Creative	Commons	Attribution	ShareAlike 3.0	



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update 
Profiling Feedback

Recompilation using
Partial Evaluation

23



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update 
Profiling Feedback

Recompilation using
Partial Evaluation

24



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Metaprogramming	in	Ruby

The	Ruby	Logo	is	Copyright	(c)	2006,	Yukihiro	Matsumoto.	It	is	licensed	under	the	terms	of	the	Creative	Commons	Attribution-ShareAlike 2.5	agreement

25



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 26



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 27



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 28



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 29



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 30



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 31



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 32



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 33



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Foundational	techniques

34



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Caching

Class Method	name Method

Array [] Array#[]

Hash [] Hash#[]

….	more	entries	…

one	table	per	virtual	machine,	lots	of	entries

35



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Inline	caching

Class Method

Array Array#[]

Class Method

Hash Hash#[]

one	table	per	call	site,	one	entry one	table	per	call	site	,	one	entry

36



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Polymorphic	inline	caching

Class Method

Array Array#[]

Class Method

Hash Hash#[]

one	table	per	call	site,	one	entry one	table	per	call	site	,	one	entry

37



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Polymorphic	inline	caching

Class Method

Array Array#[]

Hash Hash#[]

….	more	entries	…

Class Method

Array Array#[]

Hash Hash#[]

….	more	entries	…

one	table	per	call	site,	multiple	entries one	table	per	call	site,	multiple	entries

38



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Dispatch	chains

Class Method	name Method

Image resample_8bit Image#resample_8bit

Image resample_16bit Image#resample_16bit

Image resample_32bit Image#resample_32bit

….	more	entries	…

one	table	per	call	site,	multiple	entries

39



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Why	aren’t	these	a	solution	on	their	own?

40



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Caches	are	currently	implemented	manually

41



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

You	need	somewhere	to	store	an	inline	cache

42



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

You	need	somewhere	to	store	an	inline	cache

43



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

You	need	somewhere	to	store	an	inline	cache

44



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

You	need	somewhere	to	store	an	inline	cache

45



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

You	need	somewhere	to	store	an	inline	cache

46



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Caches	quickly	become	megamorphic

send :foo send :bar send :baz

[:foo, :bar, :baz]

47



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Caches	quickly	become	megamorphic

a b c d

[a, b, c, d]

48



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

How	Truffle	and	Graal make	a	difference

49



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

An	easy	place	to	store	state

50



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

An	easy	place	to	store	state

51



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

A	DSL	to	write	caches	in	just	a	couple	of	lines

52



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

A	DSL	to	write	caches	in	just	a	couple	of	lines

53



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Automatic	splitting	to	push	caches	down	the	call	stack

a b c d

[a, b, c, d]

54



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Automatic	splitting	to	push	caches	down	the	call	stack

a b c d

[a, b] [c, d]

55



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Automatic	splitting	to	push	caches	down	the	call	stack

a b c d

a b c d

56



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Results

57



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 58



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Relative	performance	of	metaprogramming	access	to	instance	variables	relative	to	
conventional	access	

59



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Slowdown	of	metaprogramming	access	to	instance	variables	relative	to	JRuby+Truffle

60



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Slowdown	of	Set#eql? relative	to	JRuby+Truffle

0

5

10

15

20

25

MRI JRuby+Truffle JRuby+Truffle	
(no	cache)

JRuby Rubinius

Sl
ow

do
w
n	
Re
la
tiv
e	
to
	

JR
ub
y+
Tr
uf
le
	(
s/
s)

61



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

The	important	properties

62



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Somewhere	to	store	state
• Caching	and	profiling	requires	somewhere	to	store	state
• Truffle’s	nodes	are	just	Java	objects,	so	you	can	store	whatever	you	
want	in	normal	Java	fields
• In	Truffle	you	are	almost	always	in	a	node,	so	you	almost	always	have	
access	to	your	state
– Doesn’t	become	inaccessible	in	compiled	code

63



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Low-effort	caching
• Truffle’s	DSL	makes	it	easy	to	add	sophisticated	polymorphic	inline	
caches anywhere
• This	is	implemented	using	the	state	that	we	just	mentioned
• Guards	can	be	arbitrary	Java	expressions,	or	zero-overhead	mutable	
flags	using	deoptimisation
• Supports	an	arbitrary	number	of	guards

64



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Dynamic	optimisation
• Dynamic	optimisation	(JIT	compilation)	comes	for	free	from	Graal
• Partial	evaluation	removes	degrees	of	freedom	that	aren’t	used
– Allows	us	to	add	degrees	of	freedom	to	handle	metaprogramming	without	
worrying

65



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Dynamic	deoptimisation
• Allows	us	to	make	speculative	optimisations	and	reverse	them	if	they	
were	wrong
• Allows	functionality	not	used	to	be	‘turned	off’	until	it	is	needed
• Allows	local	variables	to	be	lowered	all	the	way	to	registers	while	still	
letting	frames	be	accessed	as	if	they	were	objects

66



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Automatic	inlining and	splitting
• Removes	the	overhead	of	intermediate	methods	calls	and	indirection	
used	in	metaprogramming
• Allows	state	to	be	‘pushed	down’	the	call	stack	to	reduce	
polymorphism

67



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Programmatic	access	to	frames
• Allows	local	variables	to	be	read	and	written	from	outside	method	
activations
• Whole	frames	represented	as	objects
• Access	to	the	list	of	frames	currently	on	the	stack

68



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Conclusions
• We	already	knew	how	to	make	most	(not	all)	of	Ruby’s	metaprogramming	
functionality	fast
• Existing	mature	Ruby	implementations	don’t	apply	this	knowledge
• Why?	Because	it	was	hard	in	practice	to	do	it	consistently	and	pervasively
that	they	never	got	around	to	it

69



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• Truffle	and	Graal make	it	so	much	easier
• We’ve	identified	what	we	think	are	the	key	properties	that	enable	this
• I	think	Truffle	and	Graal are	the	only	systems	to	provide	effective	
implementations	of	these
• If	you	are	implementing	a	metaprogramming	language,	use	Truffle	and	
Graal
• If	you’re	making	a	new	language	implementation	system,	perhaps	
incorporate	these	same	properties

Conclusions

70



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Where	to	find	more	information

71



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Search	for	‘github graalvm’

github.com/graalvm

72



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Truffle	and	Graal:	Fast	Programming	
Languages	With	Modest	Effort

Thursday,	14:20,	Matterhorn	3	(this	room)
SPLASH-I
Adam	Welc

73



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 74



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Acknowledgements
Oracle
Danilo	Ansaloni
Stefan	Anzinger
Cosmin	Basca
Daniele	Bonetta
Matthias	Brantner
Petr	Chalupa
Jürgen	Christ
Laurent	Daynès
Gilles	Duboscq
Martin	Entlicher
Brandon	Fish
Bastian	Hossbach
Christian	Humer
Mick	Jordan
Vojin	Jovanovic
Peter	Kessler
David	Leopoldseder
Kevin	Menard
Jakub	Podlešák
Aleksandar	Prokopec
Tom	Rodriguez

Oracle	(continued)
Roland	Schatz
Chris	Seaton
Doug	Simon
Štěpán	Šindelář
Zbyněk	Šlajchrt
Lukas	Stadler
Codrut	Stancu
Jan	Štola
Jaroslav	Tulach
Michael	Van	De	Vanter
Adam	Welc
Christian	Wimmer
Christian	Wirth
Paul	Wögerer
Mario	Wolczko
Andreas	Wöß
Thomas	Würthinger

JKU	Linz
Prof.	Hanspeter	Mössenböck
Benoit	Daloze
Josef	Eisl
Thomas	Feichtinger
Matthias	Grimmer
Christian	Häubl
Josef	Haider
Christian	Huber
Stefan	Marr
Manuel	Rigger
Stefan	Rumzucker
Bernhard	Urban

University	of Edinburgh
Christophe	Dubach
Juan	José	Fumero Alfonso
Ranjeet Singh
Toomas Remmelg

LaBRI
Floréal Morandat

University	of California,	Irvine
Prof.	Michael	Franz
Gulfem	Savrun	Yeniceri
Wei	Zhang

Purdue University
Prof.	Jan	Vitek
Tomas	Kalibera
Petr	Maj
Lei	Zhao

T.	U.	Dortmund
Prof.	Peter	Marwedel
Helena	Kotthaus
Ingo	Korb

University	of California,	Davis
Prof.	Duncan	Temple	Lang
Nicholas	Ulle

University	of Lugano,	Switzerland
Prof.	Walter	Binder
Sun	Haiyang
Yudi	Zheng

Oracle	Interns
Brian	Belleville	
Miguel	Garcia
Shams	Imam
Alexey	Karyakin
Stephen	Kell
Andreas	Kunft
Volker	Lanting
Gero	Leinemann
Julian	Lettner
Joe	Nash
David	Piorkowski
Gregor	Richards
Robert	Seilbeck
Rifat	Shariyar

Alumni
Erik	Eckstein
Michael	Haupt
Christos	Kotselidis
Hyunjin	Lee
David	Leibs
Chris	Thalinger
Till	Westmann

75



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	preceding	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	information	purposes	only,	and	may	not	be	incorporated	into	any	
contract. It	is	not	a	commitment	to	deliver	any	material,	code,	or	functionality,	and	
should	not	be	relied	upon	in	making	purchasing	decisions.	Oracle	reserves	the	right	to	
alter	its	development	plans	and	practices	at	any	time,	and	the	development,	release,	and	
timing	of	any	features	or	functionality	described	in	connection	with	any	Oracle	product	or	
service	remains	at	the	sole	discretion	of	Oracle. Any	views	expressed	in	this	presentation	
are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.

76



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 77




