Call-Target Agnostic Keyword
Arguments

Maple Ong, Chris Seaton

s | shopify

Method arguments in Ruby

000

000

def foo(a, b)
a+b

end

def foo(a,
a+b
end

foo(1l, 2) f
oo(1,

Positional arguments Keyword arguments Combination of both

def foo(**args)
args[:a] + args[:b]

end

foo(**{ })

Generic keyword implementation

Generic keyword argument handling

Keyword arguments wrapped into generic representation - a
full Ruby hash object that is heap allocated

Pushed onto the stack and receiver is looked up
Dispatched to the call-target

Call-target looks up each argument in the Ruby hash

Big reason why this is bad

Ruby Hash is allocated
here...

..and immediately
consumed here, never
to be used again...

..but the compilation boundary is in between the
allocation and the use for non-inlined cases!
Graal's excellent optimisations don't apply.

Call-target-specific keyword
implementation

Call-target-specific Method Arguments

Fabio Niephaus =~ Matthias Springer

Tim Felgentreff

Tobias Pape ~ Robert Hirschfeld

Software Architecture Group, Hasso Plattner Institute, University of Potsdam

{fabio.niephaus, matthias.springer}@student.hpi.uni-potsdam.de
{tim.felgentreff, tobias.pape, hirschfeld}@hpi.uni-potsdam.de

Abstract

Most efficient implementations of dynamically-typed programming
languages use polymorphic inline caches to determine the target of
polymorphic method calls, making method lookups more efficient.
In some programming languages, parameters specified in method
signatures can differ from arguments passed at call sites. However,
arguments are typically specific to call sites, so they have to be
converted within target methods. We propose call-target-specific
method arguments for dynamically-typed languages, effectively
making argument handling part of polymorphic inline cache entries.
We implemented this concept in JRuby using the Truffle frame-
work in order to make keyword arguments more efficient. Micro-
benchmarks confirm that our implementation makes keyword argu-
ment passing in JRuby more than twice as fast.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-Oriented Programming; D.3.4 [Programming Lan-
guages]: Processors—code generation, optimization

Keywords PIC, Method Arguments, Named Arguments, JRuby

1. Introduction

2. Example: Ruby Keyword Arguments

Keyword arguments (named arguments) in Ruby will serve as a
running example in the remainder of this paper, but other con-
structs [12] such as variable-sized argument lists with a rest argu-
ment are amenable to our approach. The usage of keyword argu-
ments is wide-spread in Ruby: for instance, libraries like ActiveRe-
cord typically pass options arguments as keyword arguments [3].
They are also useful for designing domain-specific languages [5].
Ruby 2.0 introduced a more compact syntax for keyword arguments
(Listing 1), in addition to the old syntax.

def A.foo(a:, b:)
a+b
3 end

def B.foo(b:, a:)

6 a+b

7 end

o def C.foo(a:, *xkwargs)

a + kwargs[:b]
1 end

000

def foo(a, b)
a-b
end

def bar(b, a)
b - a
end

call_target = ...

if call_target == foo
args = [a, b]

elsif call_target == bar
args = [b, a]

else
deopt

end

call_target.call(*args)

call site call target call site call target
al O

a2

® g ® g
\‘
bl

-

O

%

«
O O

(a) Without call-target-specific ar- (b) With call-target-specific argu-
guments ments

|

Figure 1: Polymorphic inline cache for method dispatch.

Niephaus et al., Call-target-specific Method Arguments

307 static inline int
308 args_setup_kw_parameters_lookup(const ID key, VALUE xptr, const VALUE xconst passed_keywords, VALUE xpassed_values, const int passed_keyword_len)
309 |

310 int i;

311 const VALUE keyname = ID2SYM(key);

312

313 for (i=0; i<passed_keyword_len; i++) { «
314 if (keyname == passed_keywords[i]) {
315 *ptr = passed_values[il;

316 passed_values[i] = Qundef;

317 return TRUE;

318 }

319 }

320

321 return FALSE;

322 }

323

vm_args.c

Our hypothesis

Ruby can be polymorphic

..which means call-target-specific approaches may not apply

class A
def foo(a, b)
a+b
end
end

class B
def foo(a, b)
a-b
end
end

klass = rand(? A.new : B.new
klass.foo(1,

Call-target-specific implementation doesn’t work
well with Ruby

e Simpler for call-target to receive arguments but more
complex on the call-site

e And there are many more call-sites than call-targets

e Does not work well with polymorphism

e Does not work well with metaprogramming

Other considerations

Ruby Hash representation of arguments will fail
escape-analysis in non-inlined cases, or cases with a
large number of keyword arguments

Non-inline performance of keyword arguments has an
overhead in CRuby and TruffleRuby

Keyword arguments inherently straddle a compilation
boundary

Therefore requires more creativity to solve than
conventional optimisations

What is the big idea “:

call-sites >> call-targets

Call-sites to send arguments in any format and for
call-target to dynamically adapt to the argument it receives

Call-target-agnostic Method Argument Handling

e Argument values flattened and paired with a static
descriptor

e Both are pushed onto the stack and receiver is looked up
e Dispatched to the call-target

e (Calltarget uses the descriptor to unpack arguments
based on the index

How our idea works in theory

def foo(a, b)
a+b
end

foo(1l, 2)

00

def foo(kwargs)
kwargs[:a] + kwargs[:b]

end

foo({ })

00

def foo(keywords, values)
values[keywords.index_of(:a)] + values[keywords.index_ of(:b)]

end

foo([:a, [l 1p)

00

def foo(keywords, values)
if keywords == :]
]

values[0] + values]|
else

deopt
end
end

foo([

00

def foo(keywords, values)
i1f keywords == :]
values[0] + values[1]
elsif keywords == ;

values[1l] + values[2]
else
deopt
end
end

def foo(keywords, values)
if keywords == []
values[0] + values[1]
else
deopt
end
end

def foo(keywords, values)
values[0] + values[1]

How our idea works in practice

00

@Specialization
protected

i

@ExplodelLoop
@Specialization(= "descriptor == cachedDescriptor")

protected (
@Cached("descriptor")
@Cached(= "getSlots(cachedDescriptor)")
for (0; < . (); n++) {
final [n];
[n]);

b

An Object Storage Model for the Truffle
Language Implementation Framework

Andreas WoB* Christian Wirth

Daniele BonettaJr

Chris SeatonT Christian Humer™

Hanspeter Maossenbock™

Institute for System Software, Johannes Kepler University Linz, Austria
{christian.wirth, daniele.bonetta, chris.seaton}@oracle.com

{woess, christian.humer, moessenboeck}@ssw.jku.at

Abstract

Truffle is a Java-based framework for developing high-performance
language runtimes. Language implementers aiming at developing
new runtimes have to design all the runtime mechanisms for man-
aging dynamically typed objects from scratch. This not only leads
to potential code duplication, but also impacts the actual time
needed to develop a fully-fledged runtime.

In this paper we address this issue by introducing a common
object storage model (OSM) for Truffle that can be used by lan-
guage implementers to develop new runtimes. The OSM is generic,
language-agnostic, and portable, as it can be used to implement
a great variety of dynamic languages. It is extensible, featuring
built-in support for custom extension mechanisms. It is also high-
performance, as it is designed to benefit from the optimizing com-
piler in the Truffle framework. Our initial evaluation indicates that
the Truffle OSM can be used to implement high-performance lan-
guage runtimes, with no performance overhead when compared to
language-specific solutions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Run-time environments, Optimization

General Terms Algorithms, Languages, Performance
Keywords Dynamic languages, virtual machine, language imple-

mentation, optimization, Java, JavaScript, Ruby, Truffle

1. Introduction

JfOracle Labs

eral Truffle-based implementations for dynamic languages exist,
including JavaScript, Ruby, Python, Smalltalk, and R. All of the
existing implementations offer very competitive performance when
compared to other state-of-the-art implementations, and have the
notable characteristics of being developed in pure Java (in contrast
to native runtimes that are usually written in C/C++).

To further sustain and widen the adoption of Truffle as a com-
mon Java-based platform for language implementation, Truffle of-
fers a number of shared APIs that language implementers can use
to optimize the AST interpreter in order to produce even more opti-
mized machine code. In order to obtain high performance, however,
there has still been one core component that the Truffle platform
did not offer to language implementers, and that had to be imple-
mented manually. This core component is the object storage model,
that is, the runtime support for implementing dynamic objects. In-
deed, language implementers relying on the Truffle platform have
to implement their own language-specific model for representing
objects, and then have to optimize the language runtime accord-
ingly in order to optimize the AST interpreter for the characteristics
of a certain language’s object model. Requiring language imple-
menters to develop the object storage model of their new language
from scratch is not only a waste of resources, but could also lead to
questionable software engineering practices such as code duplica-
tion and non-modular design.

With the goal of solving the above limitation of the Truf-
fle framework and with the aim of supporting language devel-
opers with a richer shared infrastructure, this paper introduces a
new, language-independent, object storage model (OSM) for Truf-

00
arguments = {

static_descriptor

dynamic_data = [

Why this is an interesting design space?

Method arguments handling will fundamentally
straddle a compilation unit, unless the call-site is

inlined
Therefore, Graal’s typical optimizations does not apply

Still Playing to Graal's Strength

Relies on Graal and Truffle’s ability to create efficient
inline caches on arbitrary guards

Dynamic optimization results in specialized, compact
code

Fallbacks are handled by interpreter

What it achieves

186 BoxNode$TrustedBoxedValue

jave I~;.value
A}
204 BoxNode$TrustedBoxedValue 617 Unbox -
value
A 4
742 Unbox X

1164 BoxNode$AllocatingBox

[

resul

353 C{NonEmptyKeywordDescriptor @f330877)

eue

o

l 222 BoxNode$TrustedBoxedValue | 824 Unbox

—

o S

2760 BoxNode$AllocatingBox |
/

resul

222 BoxNode$TrustedBoxedValue

value

824 Unbox

MR

204 BoxNode$TrustedBoxedValue

—

/

/Vdgl
o~ e
/‘ u

Benchmark Implementation Compilation Time AST IR Code size

Long Caller Control 1299(414+885)ms |65 147/ 1728 6994
Call-target-agnostic | 468(289+179)ms 65 120/ 230 1078

Long Callee Control 1056(1064951)ms | 137 711/ 1523 5970
Call-target-agnostic | 266(128+138)ms 72 92/ 152 570

Short Caller Control 699(312+388)ms 28 98/ 463 1714
Call-target-agnostic | 490(281+210)ms 29 90/ 187 754

Short Callee Control 347(142+205)ms 35 159/ 299 1158
Call-target-agnostic | 242(116+126)ms 24 44/ 98 422

Conclusion

Conclusion

Ruby keyword arguments are logically very expensive
o Pass a Ruby hash object of keywords and values and look up
the values you want
Previous published work tackled at the call-site this by putting

arguments into a standard order for the call-target
o But this requires knowing the call-target, and it requires extra work at the
call-site

Our hypothesis is that there are many more call-sites than call-targets,
so it makes sense to put the work at the call-target

Ruby’s idiomatic use also often means you may not know the
call-target at a given call-site

Therefore we instead have the call-site send a description of the
keyword arguments, and separately their values, and have the
call-target inline cache against the description

ING'S University of

College
LONDON Kent Avstralian

&7 Q= National
Staezzay University
ROYAL o

ACADEMY OF
ENGINEERING

THE ROYAL SOCIETY

