
Call-Target Agnostic Keyword
Arguments

Maple Ong, Chris Seaton

Method arguments in Ruby

Positional arguments Keyword arguments Combination of both

Todo example of splatting

Generic keyword implementation

Generic keyword argument handling

● Keyword arguments wrapped into generic representation - a
full Ruby hash object that is heap allocated

● Pushed onto the stack and receiver is looked up
● Dispatched to the call-target
● Call-target looks up each argument in the Ruby hash

Big reason why this is bad

Ruby Hash is allocated
here…

…and immediately
consumed here, never
to be used again…

…but the compilation boundary is in between the
allocation and the use for non-inlined cases!
Graal’s excellent optimisations don’t apply.

Call-target-specific keyword
implementation

Niephaus et al., Call-target-specific Method Arguments

vm_args.c

Our hypothesis

Ruby can be polymorphic

…which means call-target-specific approaches may not apply

Call-target-specific implementation doesn’t work
well with Ruby

● Simpler for call-target to receive arguments but more
complex on the call-site

● And there are many more call-sites than call-targets
● Does not work well with polymorphism
● Does not work well with metaprogramming

Other considerations

● Ruby Hash representation of arguments will fail
escape-analysis in non-inlined cases, or cases with a
large number of keyword arguments

● Non-inline performance of keyword arguments has an
overhead in CRuby and TruffleRuby

● Keyword arguments inherently straddle a compilation
boundary

● Therefore requires more creativity to solve than
conventional optimisations

What is the big idea 🧠

call-sites >> call-targets

Call-sites to send arguments in any format and for
call-target to dynamically adapt to the argument it receives

Call-target-agnostic Method Argument Handling

● Argument values flattened and paired with a static
descriptor

● Both are pushed onto the stack and receiver is looked up
● Dispatched to the call-target
● Call-target uses the descriptor to unpack arguments

based on the index

How our idea works in theory

def foo(a, b)

 a + b

end

foo(1, 2)

def foo(a:, b:)

 a + b

end

foo(a: 1, b: 2)

def foo(kwargs)

 kwargs[:a] + kwargs[:b]

end

foo({a: 1, b: 2})

def foo(keywords, values)

 values[keywords.index_of(:a)] + values[keywords.index_of(:b)]

end

foo([:a, :b], [1, 2])

def foo(keywords, values)

 if keywords == [:a, :b] # pointer comparison

 values[0] + values[1]

 elsif keywords == [:b, :a] # pointer comparison

 values[1] + values[2]

 else

 deopt

 end

foo([:a, :b], [1, 2])

foo([:b, :a], [2, 1])

How our idea works in practice

Why this is an interesting design space?

● Method arguments handling will fundamentally
straddle a compilation unit, unless the call-site is
inlined

● Therefore, Graal’s typical optimizations does not apply

Still Playing to Graal’s Strength

● Relies on Graal and Truffle’s ability to create efficient
inline caches on arbitrary guards

● Dynamic optimization results in specialized, compact
code

● Fallbacks are handled by interpreter

What it achieves

Benchmark Implementation Compilation Time AST IR Code size

Long Caller Control 1299(414+885)ms 65 147/ 1728 6994

Call-target-agnostic 468(289+179)ms 65 120/ 230 1078

Long Callee Control 1056(106+951)ms 137 711/ 1523 5970

Call-target-agnostic 266(128+138)ms 72 92/ 152 570

Short Caller Control 699(312+388)ms 28 98/ 463 1714

Call-target-agnostic 490(281+210)ms 29 90/ 187 754

Short Callee Control 347(142+205)ms 35 159/ 299 1158

Call-target-agnostic 242(116+126)ms 24 44/ 98 422

Conclusion

Conclusion
● Ruby keyword arguments are logically very expensive

○ Pass a Ruby hash object of keywords and values and look up
the values you want

● Previous published work tackled at the call-site this by putting
arguments into a standard order for the call-target

○ But this requires knowing the call-target, and it requires extra work at the
call-site

● Our hypothesis is that there are many more call-sites than call-targets,
so it makes sense to put the work at the call-target

● Ruby’s idiomatic use also often means you may not know the
call-target at a given call-site

● Therefore we instead have the call-site send a description of the
keyword arguments, and separately their values, and have the
call-target inline cache against the description

