
8

Cross-Language Interoperability in a Multi-Language

Runtime

MATTHIAS GRIMMER and ROLAND SCHATZ, Oracle Labs, Austria

CHRIS SEATON, Oracle Labs, United Kingdom

THOMAS WÜRTHINGER, Oracle Labs, Switzerland

MIKEL LUJÁN, University of Manchester, United Kingdom

In large-scale software applications, programmers often combine different programming languages because
this allows them to use the most suitable language for a given problem, to gradually migrate existing
projects from one language to another, or to reuse existing source code. However, different programming
languages have fundamentally different implementations, which are hard to combine. The composition of lan-
guage implementations often results in complex interfaces between languages, insufficient flexibility, or poor
performance.

We propose TruffleVM, a virtual machine (VM) that can execute different programming languages and is
able to compose them in a seamless way. TruffleVM supports dynamically-typed languages (e.g., JavaScript
and Ruby) as well as statically typed low-level languages (e.g., C). It consists of individual language imple-
mentations, which translate source code to an intermediate representation that is executed by a shared VM.
TruffleVM composes these different language implementations via generic access. Generic access is a language-
agnostic mechanism that language implementations use to access foreign data or call foreign functions. It
features language-agnostic messages that the TruffleVM resolves to efficient foreign-language-specific oper-
ations at runtime. Generic access supports multiple languages, enables an efficient multi-language develop-
ment, and ensures high performance.

We evaluate generic access with two case studies. The first one explains the transparent composition of
JavaScript, Ruby, and C. The second one shows an implementation of the C extensions application program-
ming interface (API) for Ruby. We show that generic access guarantees good runtime performance. It avoids
conversion or marshalling of foreign objects at the language boundary and allows the dynamic compiler to
perform its optimizations across language boundaries.

CCS Concepts: • Software and its engineering → Dynamic compilers; Runtime environments; Inter-
preters;

Additional Key Words and Phrases: Cross-language, language interoperability, virtual machine, optimization,
language implementation

ACM Reference format:

Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Würthinger, and Mikel Luján. 2018. Cross-Language
Interoperability in a Multi-Language Runtime. ACM Trans. Program. Lang. Syst. 40, 2, Article 8 (May 2018),
43 pages.
https://doi.org/10.1145/3201898

Authors’ addresses: M. Grimmer and R. Schatz, Oracle Labs Linz, Altenbergerstraße 69, 4040 Linz, Austria; emails: contact@

matthiasgrimmer.com, roland.schatz@oracle.com; C. Seaton, Chris Seaton, 6 Boundary Lane, Heswall, Cheshire, CH60 5RR,

UK; email: chris.seaton@oracle.com; T. Würthinger, Oracle Labs Switzerland, Bahnhofstraße 100, 8001 Zurich, Switzerland;

email: thomas.wuerthinger@oracle.com; M. Luján, School of Computer Science, University of Manchester, Manchester M13

9PL, UK; email: mikel.lujan@manchester.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 0164-0925/2018/05-ART8 $15.00

https://doi.org/10.1145/3201898

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

https://doi.org/10.1145/3201898
mailto:permissions@acm.org
https://doi.org/10.1145/3201898

8:2 M. Grimmer et al.

1 INTRODUCTION

In large-scale software development, it is common that programmers write applications in multiple
languages rather than in a single language [11]. Combining multiple languages allows them to
use the most suitable language for a given problem, to gradually migrate existing projects from
one language to another, or to reuse existing source code. There is no programming language
that is best for all kinds of problems [3, 11]. High-level languages allow representing algorithms
in an elegant way but sacrifice low-level features such as pointer arithmetic and raw memory
access. Therefore, business logic is typically written in a high-level language such as JavaScript
whereas the computational kernels and networking stacks, for example, are written in a low-level
language such as C. Programmers use cross-language interfaces to pick the most suitable language
for a given part of a problem. Programmers often also combine different languages when migrating
software from one language to another. For example, they can gradually port legacy C code to Ruby,
rather than having to rewrite the whole project at once. Finally, cross-language interoperability
enables programmers to reuse existing libraries in foreign languages. Due to the large body of
existing code, it is often not feasible to rewrite libraries in different languages. A more realistic
approach is to interface to the existing code, which allows reusing it.

Our scenario of large-scale software development where programmers mix different languages
poses challenges for language implementers as well as for application developers:

—Multi-language development: Application programmers need an interface that allows them
to switch execution from one language to another and to access foreign data and functions.
This application programming interface (API) needs to bridge the different languages on
a source code level but also needs to bridge different language paradigms and features.
Examples are object-oriented and non-object-oriented programming, dynamic and static
typing, explicit and automatic memory management, or safe and unsafe memory access.

—Language implementation composition: Different implementations of programming lan-
guages execute programs differently (e.g., interpretation on a virtual machine (VM) and na-
tive execution) and also use, for example, different object model implementations (dynamic
objects of JavaScript and byte sequences of C), use different memory models (automatic
memory management of the Java Virtual Machine (JVM) and manual memory manage-
ment in C), or use different safety mechanisms (runtime errors in Java and segmentation
faults in C). Cross-language interoperability needs to bridge code that is running on dif-
ferent implementations. For example, a VM needs a mechanism for calling native code and
vice versa. Also, this mechanism needs to provide an interface for accessing foreign data and
hereby bridge different strategies for memory management and different implementations
of object models.

In the following, we analyze three approaches for cross-language interoperability: (1) foreign
function interfaces (FFIs), (2) inter-process communication, and (3) multi-language runtimes. We
identified these approaches as the most relevant techniques and point out their major limitations,
which are restricted flexibility, complex APIs, and performance limitations.

Foreign Function Interfaces. When programming languages are compiled to different object and
code models, composition becomes complicated. One needs a mechanism that can integrate foreign
code into a host application and therefore bridge the different implementations. Many modern VMs
have an FFI that can integrate native code. An FFI links the native binaries into a VM and also offers
an API, which allows the programmer to exchange data between the runtime and the native parts
of an application.

The result is a mechanism that caters primarily to composing two specific languages rather than
arbitrary languages. Also, the implementation of these interfaces requires runtime support, which

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:3

Listing 1. Function to store a value in to an array as pert of the Ruby API.

means that the APIs often depend on the original implementation of the languages. For exam-
ple, interpreted languages such as Perl, Python, and Ruby provide support for running extension
modules written in the lower-level language C, known as C extensions or native extensions. C exten-
sions are written in C or C++, and are dynamically loaded and linked into the VM of the high-level
language as a program runs. The APIs against which these extensions are written often simply
provide direct access to the internal data structures of the standard language implementation. For
example, Ruby C extensions1 are written against the API of the original Ruby implementation
Matz’ Ruby Interpreter (MRI).2 This API contains functions that allow C code to manipulate Ruby
objects at a high level, but also includes routines that let you directly access pointers to internal
data such as the character array in a string object. Figure 1 shows the rb_ary_store function,
which is part of this interface and allows a C extension to store an element into a Ruby array.

Such APIs are simple, powerful, and reasonably efficient, but they only work well for the lan-
guage implementations for which they were designed. As dynamic languages become more and
more popular, they are going to be reimplemented using modern VM technologies such as dy-
namic or just-in-time (JIT) compilation and advanced garbage collection. These implementations
typically use significantly different internal data structures, which makes an implementation of
the original APIs for C extensions hard. As a solution, a bridging layer is often introduced be-
tween the internal data structures and the C extensions API. However, this layer imposes costs
for transforming the optimized data structures to low-level C data and vice versa. As performance
is usually the primary goal of using C extensions, such a bridging layer is suboptimal. Therefore,
modern implementations of dynamic languages often have limited support for C extensions. For
example, the JRuby3 implementation of Ruby on top of the JVM had limited support for C exten-
sions. It used a bridging layer to transform Java objects to C data and vice versa. This layer was
complicated to maintain and the performance was poor. Eventually, the JRuby team removed the
C extensions support completely.4,5

Finally, linking native code into the VM impedes compiler optimizations across language bound-
aries and thus limits performance [52]. Compilers cannot inline or optimize foreign code and need
to make conservative assumptions about it. Thus, language boundaries can become a performance
bottleneck if multi-language components are tightly coupled.

Inter-Process Communication. Rather than composing language implementations at their imple-
mentation level, a message-based inter-process communication treats them as black boxes. Ex-
amples are the Common Object Request Broker Architecture [44, 55] or Apache’s Thrift [43, 48],
which were originally designed for remote procedure call systems but are often used for writing
multi-language applications on the same machine. In this scenario, application programmers use
a language-agnostic interface description language (IDL) to access objects or to perform opera-
tions across languages. This interface marshals data to and from a common wire representation.
Programmers who use this approach need to learn and to apply an IDL, which adds a usability

1Ruby Language, Yukihiro Matsumoto, 2015: https://www.ruby-lang.org.
2MRI stands for Matz’ Ruby Interpreter, after the creator of Ruby, Yukihiro Matsumoto.
3JRuby, Charles Nutter and Thomas Enebo and Ola Bini and Nick Sieger and others, 2015: http://jruby.org.
4Ruby Summer of Code Wrap-Up, Tim Felgentreff, 2015: http://blog.bithug.org/2010/11/rsoc.
5JRuby C Extensions: CRuby extension support for JRuby, GitHub repository, 2015: https://github.com/jruby/jruby-cext.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

https://www.ruby-lang.org
http://jruby.org
http://blog.bithug.org/2010/11/rsoc
https://github.com/jruby/jruby-cext

8:4 M. Grimmer et al.

Listing 2. C source code.

Listing 3. JavaScript source code.

burden. Also, inter-process communication imposes a performance overhead. The marshalling of
data introduces a copying overhead whenever language implementations exchange data.

Lightweight remote procedure calls [7] optimize this approach for communication between pro-
tected domains on the same machine, which reduces the heavy-weight marshalling of data. How-
ever, language implementations still need to treat each other as black boxes and the compiler
cannot optimize a program across language boundaries.

Multi-Language Runtimes. Another approach for cross-language interoperability is to run all
language implementations on a shared VM. For example, Microsoft’s Common Language Runtime
(CLR) [10, 15, 42] as well as RPython [9] are runtimes that can host implementations for different
languages.

The CLR composes the individual languages by compiling them to a shared intermediate rep-
resentation (IR). It uses a shared set of IR operations and a shared representation of data for all
language implementations, which enables interoperability. A language implementation on top of
the CLR is bound to use the Common Type System (CTS) of the CLR. We are convinced that a
multi-language runtime could be more flexible. First, the CLR does not support integrating low-
level, statically compiled languages like C directly. Native code is integrated via an FFI-like inter-
face. Second, the internal data representation is generic and cannot be optimized for an individual
language. Since efficient data representations and data accesses are critical for the performance of
an application, we consider this a limiting factor.

RPython uses a different approach in which languages are composed on a very fine granularity
(e.g., Python and Prolog [3] or Python and the Hypertext Preprocessor (PHP) [5]). However, we
consider this approach as too inflexible because it can only compose a certain pair of languages.

We are convinced that a multi-language runtime is a promising approach for executing multi-
language applications efficiently. In this article, we propose TruffleVM, which can execute and
combine multiple programming languages. Our runtime features a language-agnostic and flexible
mechanism for cross-language interoperability, i.e., it can compose arbitrary languages rather than
only a fixed set of languages. We evaluate TruffleVM with three different languages: JavaScript,
Ruby, and C. It can execute high-level managed languages as well as low-level unmanaged lan-
guages on the same VM and combines the languages with each other.

We approach cross-language interoperability in three steps:

(1) Composition on the language level: We combine JavaScript, Ruby, and C by using two dif-
ferent approaches. First, we show a seamless approach for multi-language development.
Multi-language applications can access foreign objects and can call foreign functions by
simply using the operators of the host language. For example, a field of a C struct (List-
ing 2) can be accessed from a JavaScript program (Listing 3) by just using the JavaScript op-
erator for field accesses. Note that no specific API and no boiler-plate code has to be used.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:5

Second, we combine different languages using an existing FFI. We implement the C
extensions API for Ruby on top of TruffleVM. Our solution is source-compatible with the
existing Ruby API. Thus, our system is able to run existing, almost unmodified legacy C
extensions for Ruby.

(2) Composition of language implementations: We present a language-agnostic mechanism for
operations on foreign data or code, which we call generic access. Generic access enables
language implementations to efficiently exchange data or code across languages and to
bridge possibly different type systems and their semantics.

(3) Optimization across language boundaries: Language boundaries often add a performance
overhead because the cross-language interface has to marshal data, because language
implementations need to use language-agnostic (and therefore less optimized) data rep-
resentations, and because compilers cannot optimize an application across language
boundaries.

TruffleVM executes different languages using abstract syntax tree (AST) interpreters.
Generic access combines the ASTs of multi-language code, which allows direct access to
foreign objects, inlining across language boundaries, and therefore removing the com-
pilation barrier at the language boundaries. Also, this technique allows each language
implementation to use data structures that meet the requirements of the individual lan-
guage best. For example, the C implementation can allocate raw memory on the native
heap while the JavaScript implementation can use dynamic objects on a managed heap.

The main contribution of this article (which is an extension of Refs. [25] and [26]) is a novel
approach for the seamless composition of programming languages by means of generic access to
foreign data and code. We demonstrate this idea by describing TruffleVM. The scientific contribu-
tions of this article can be grouped into two categories:

—Language implementation composition: We present a novel approach for accessing foreign
data and functions in a language-agnostic way, which we call generic access [25, 26]. Generic

access is independent of languages, data representations, and calling conventions. It can
compose arbitrary languages rather than a fixed set of languages. Multi-language code that
runs on top of TruffleVM is interoperable. Also, generic access guarantees high performance
of multi-language applications. It can directly access any data representation and does not
have to marshal data at language boundaries. Moreover, it enables the compiler to optimize
and inline across language boundaries.

—Extensive evaluation by case studies: We evaluate generic access with a case study in which
we compose JavaScript, Ruby, and C [25] in single-threaded applications. We list the dif-
ferent language paradigms and semantics and explain how we bridge these differences. We
evaluate the performance of multi-language applications using non-trivial multi-language
benchmarks.

We furthermore evaluate generic access with a second case study, which is an implemen-
tation of the C extensions API for Ruby [26]. When running real-world C extensions, our
evaluation shows that they run faster than natively compiled C extensions that interface to
conventional implementations of Ruby.

2 SYSTEM OVERVIEW

We build on our previous work on Truffle and Graal and use the Truffle Language Implementations

(TLIs) for JavaScript, Ruby, and C for our case studies. Truffle [61] is a platform for implementing
high-performance language implementations as AST interpreters in Java. These AST interpreters
model constructs of the guest language as nodes. These nodes build a tree (i.e., an AST) that

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

8:6 M. Grimmer et al.

Fig. 1. Parsing guest languages to Truffle ASTs and dynamic compilation using Graal.

represents the program to be interpreted. Each node extends a common base class Node and has
an execute method, which implements the semantics of the corresponding language construct.
By calling these methods, the whole AST is evaluated. The language implementer designs the
AST nodes and provides facilities to build the AST from the guest language code. Language
developers write language-specific parts (i.e., AST nodes for all operations of a language) when
implementing a language (see left part of Figure 1).

Truffle AST nodes can speculatively rewrite themselves with specialized variants [62] at run-
time, e.g., based on profile information obtained during execution such as type information. Nodes
specialize on a subset of the semantics of an operation, i.e., they replace themselves with a sim-
pler (and often faster) implementation. Language developers can implement this self-optimization
via tree rewriting for their nodes and use it as a general mechanism for dynamically optimizing
code at runtime. If these speculative assumptions turn out to be wrong, the specialized tree can be
transformed to a more generic version that provides functionality for all possible cases.

Concrete examples of specializations are:

Type Specialization. Operators in dynamic languages often have complex semantics. The
behavior of an operation can, for example, depend on the types of the operands. Hence,
such an operator needs to check the types of its operands and choose the appropriate
version of the operator. However, for each instance of a particular operator in a guest
language program, it is likely that the types of its operands do not change at runtime.
Truffle’s self-optimization capability allows us to replace the full implementation of an
operation with a specialized version that speculates on the types of the operands be-
ing constant. This specialized version then only includes the code for this single case.
For example, consider an add operation of a dynamic language (e.g., JavaScript) that has
different semantics depending on the types of its operands. Truffle trees can adapt them-
selves according to type feedback, e.g., a general add operation can replace itself with a
faster integer-add operation if its operands have been observed to be integers.

Type specialization is also used to efficiently implement object accesses. For example,
consider a property access in JS (see Figure 2). TruffleJS specializes the property read on
the shape of object obj [58]. This specialization assumes that the shape of the object is
constant and directly accesses the object member value.

If the optimistic specialization of an operator fails at runtime, the specialized node
changes back to a more generic version.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:7

Fig. 2. Specialization of a property access a = obj.value in TruffleJS.

Polymorphic Inline Caches. Truffle’s self-optimization capability allows building up poly-
morphic inline caches [30] at runtime. An inline cache is an optimization that improves
the performance of runtime method binding by caching the target method of a previous
lookup at the call site. In Truffle, an inline cache is built by chaining nodes. Each node
in this chain then checks whether the cached target matches and eventually executes the
specialized subtree for this target. If the target does not match, the chain delegates the
handling of the operation to the next node. When the chain reaches a predefined length,
the whole chain replaces itself with a single node that can handle the fully megamorphic
case.

Resolving Operations. Operations of a TLI might include a resolving step that happens at
runtime. For example, a TLI can resolve and cache the target of a function call lazily at
runtime. This lazy resolving step is implemented with self-optimization, which in this
case replaces the node of an unresolved call operation at runtime by its resolved version.
In subsequent executions, this node need not be resolved again.

After an AST has become stable (i.e., when no more rewritings occur) and when the execution
frequency has exceeded a predefined threshold, Truffle partially evaluates [60] the tree and dy-
namically compiles it to optimized machine code (see right part of Figure 1). Partial evaluation
and all compiler optimizations are transparent to the Truffle language implementer and happen
automatically.

Truffle uses the Graal compiler [13, 14, 23, 49–51] for dynamic compilation. Partial evaluation
means that the Graal compiler inlines all node execution methods of a tree into a single method,
assuming that the tree remains stable. This allows the compiler to remove all the virtual dispatches
between the execute methods of the AST nodes and to inline them. Inlining produces a combined
compilation unit for the whole tree. The Graal compiler can then apply its aggressive optimiza-
tions over the whole tree, which results in highly efficient machine code. This special form of
interpreter compilation is an application of partial evaluation to generate compiled machine code
from a specialized interpreter [18].

The compiler inserts deoptimization points [31] in the machine code where the speculative
assumptions about the tree are checked. Every control flow path that finds such an assumption
violated transfers back from the compiled machine code to the interpreted AST, where specialized
nodes can be reverted to a more generic version. This is called deoptimization.

The TruffleVM is a modification of the HotSpot VM: it adds the Graal compiler, Truffle, and
the TLIs, but reuses all other parts of the HotSpot VM, including the garbage collector and the
interpreter. Figure 3 shows the layers of TruffleVM.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

8:8 M. Grimmer et al.

Fig. 3. Layers of the TruffleVM: TruffleJS, TruffleRuby, and TruffleC are hosted by the Truffle framework on
top of the HotSpot VM (using Graal as a JIT compiler).

For our work, we modified TLIs and extended the Truffle framework itself (left part of Figure 1);
no changes were necessary to the Graal compiler or any other parts of the HotSpot VM (right part
of Figure 1). For our case studies, we used TLIs for JavaScript (TruffleJS), Ruby (TruffleRuby), and
C (TruffleC).

2.1 TruffleJS

TruffleJS is an implementation of JavaScript on top of Truffle. It was originally Truffle’s proof
of concept. The closed-source implementation is available as a binary on Oracle’s Technology
Network.6

JavaScript is a dynamically typed and prototype-based scripting language. It allows an object-
oriented, an imperative, as well as a functional programming style, which makes it a good candi-
date for the evaluation and the case study in this article. TruffleJS uses AST specialization, e.g., for
specializing operations according to the observed dynamic types of their operands.

TruffleJS is a state-of-the-art JavaScript engine that implements the ECMAScript 2016 standard.
It passes 93% of the ECMAScript 2016 standard test suite [53]. At the point of writing this arti-
cle, the failing features were: TruffleJS did not implement the unicode flag of RegExp; failures
in corner case tests in Shared Array Buffers, Async/Await, and Destructing Assignments. Its per-
formance was evaluated in Ref. [58] using a selected set of benchmarks from the Octane bench-
mark suite. Figure 4 summarizes the performance evaluation of Ref. [58] for JavaScript. The y-axis
shows the performance of Google’s V8,7 Mozilla’s Spidermonkey,8 and Nashorn as included in
JDK 8u59 relative to TruffleJS where the outermost lines show the minimum and maximum perfor-
mance and the inner dot shows the average performance. The x-axis shows the different language
implementations.

Google’s V8 is between 210% faster and 67% slower (52% faster on average) than TruffleJS;
Mozilla’s Spidermonkey is between 160% faster and 22% slower (54% faster on average) than
TruffleJS; Nashorn is between 12% faster and 96% slower (74% slower on average) than TruffleJS.
A more detailed description of TruffleJS can be found in Ref. [58].

6JavaScript implementation as part of GraalVM, Oracle, 2017: http://www.oracle.com/technetwork/oracle-labs/program-

languages/downloads/index.html.
7V8 JavaScript Engine, Google, 2015: http://code.google.com/p/v8.
8SpiderMonkey JavaScript Engine, Mozilla Foundation, 2015: http://developer.mozilla.org/en/SpiderMonkey.
9Nashorn JavaScript Engine, Oracle, 2015: http://openjdk.java.net/projects/nashorn.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

http://www.oracle.com/technetwork/oracle-labs/program-penalty -@M languages/downloads/index.html
http://code.google.com/p/v8
http://developer.mozilla.org/en/SpiderMonkey
http://openjdk.java.net/projects/nashorn

Cross-Language Interoperability in a Multi-Language Runtime 8:9

Fig. 4. Relative speedup of different JavaScript implementations compared to TruffleJS; results taken from
Ref. [58] (higher is better).

2.2 TruffleRuby

TruffleRuby is an implementation of Ruby on top of Truffle. Ruby is a dynamically typed object-
oriented language that is inspired by Smalltalk and Perl. TruffleRuby reuses the parser from JRuby.
Otherwise, however, the two systems have little in common. TruffleRuby (also called JRuby+Truffle
in Refs. [26] and [47]) should be considered entirely separate from JRuby for this discussion.
TruffleRuby is an open source project and available on GitHub.10

TruffleRuby is a state-of-the-art Ruby engine that aims to be highly compatible with the stan-
dard implementation of Ruby, MRI, version 2.3.3. TruffleRuby passes 98% (language) and 94% (core
library) of the Ruby spec standard test suite. At the point of writing this article, the failing fea-
tures were: TruffleRuby does not implement continuations and callcc, fork of the TruffleRuby
interpreter, and refinements. Figure 5 summarizes the performance evaluation of Ref. [58] for Truf-
fleRuby. The y-axis shows the performance of MRI, Rubinius11,12, JRuby, and Topaz13 relative to
TruffleRuby where the outermost lines show the minimum and maximum performance and the in-
ner dot shows the average performance. The x-axis shows the different language implementations.
This evaluation uses the Richards and DeltaBlue benchmarks from the Octane suite, a neural-net,
and an n-body simulation. MRI is between 63% and 97% slower (92% slower on average) than
TruffleRuby; Rubinius is between 24% and 97% slower (83% slower on average) than TruffleRuby;
JRuby is between 61% and 94% slower (84% slower on average) than TruffleRuby; Topaz is be-
tween 1% and 87% slower (71% slower on average) than TruffleRuby. A more detailed description
of TruffleRuby can be found in Refs. [26] and [47].

10Ruby implementation on top of Truffle, Oracle, 2017: https://github.com/graalvm/truffleruby.
11An implementation of Ruby, Rubinius, 2015: http://rubini.us.
12Rubinius, GitHub repository, 2015: https://github.com/rubinius/rubinius.
13Topaz Project, GitHub repository, 2015: https://github.com/topazproject/topaz.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

https://github.com/graalvm/truffleruby
http://rubini.us
https://github.com/rubinius/rubinius
https://github.com/topazproject/topaz

8:10 M. Grimmer et al.

Fig. 5. Relative speedup of different Ruby implementations compared to TruffleRuby; results taken from
Ref. [58] (higher is better).

2.3 TruffleC

TruffleC [22] is an implementation of C on top of Truffle. It executes C code and makes heavy use
of Truffle’s self-optimization capability: TruffleC uses polymorphic inline caches [30] to efficiently
handle function pointer calls and profiles branch probabilities to optimistically remove dead code.
It also profiles runtime values and replaces them with constants if they do not change over time.

A C program running on top of TruffleC can switch execution from TruffleC to a native function
(e.g., one that is part of the standard C library) using Graal’s native function interface (GNFI) [23].
When switching from the TruffleC interpreter (that is written in Java) to native code, GNFI al-
lows passing parameters from Java to a native function. Besides passing parameters, TruffleC can
also exchange data of the running C program via pointers. TruffleC allocates C data on the native
heap rather than on the garbage-collected Java heap and uses the same data alignment as conven-
tional C compilers do, which allows sharing allocations (e.g., structs, unions, and arrays) between
TruffleC and native code. Also, this allows TruffleC to support pointer arithmetic and to replicate
the same behavior as conventionally compiled C code. To access the native heap, TruffleC uses
the Java Unsafe API (available under restricted access in the OpenJDK). The Unsafe API provides
functionality to manually allocate memory on the native heap and to load data from it and store
data into it.

TruffleC uses CAddress Java objects to implement pointers. CAddress objects that point to an
allocation on the native heap wrap a raw memory address as a 64-bit value [27]. CAddress objects
that point to C functions (i.e., a Truffle AST) use a Java object reference. Also, a CAddress attaches
type information to pointers, which makes generic access for TruffleC (see Section 4.1) possible.

TruffleC aims to support the C99 standard [32], however, it is not yet fully complete. It does not
yet have support for flexible array members, variable-length automatic arrays, designated initial-
izers, and compound literals. Flexible array members14 allow defining a C struct that has an array

14Arrays of length zero, GCC the GNU Compiler Collection, 2015: https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html

Cross-Language Interoperability in a Multi-Language Runtime 8:11

Fig. 6. Relative speedup of code generated by GCC compared to TruffleC; results taken from Ref. [24] (higher
is better).

member without a given dimension. Variable-length automatic arrays15 are array data structures
whose length is determined at runtime. Designated initializers16 allow assigning values to arrays
or structs in any order. Compound literals17 look like casts that contain an initialization. The ini-
tialization value is specified as a list of all values to be assigned. Adding these features would only
require additional engineering effort, i.e., TruffleC has no conceptual restrictions in this respect.
Adding support for these missing features is planned as future work.

TruffleC’s performance was evaluated in Ref. [24] using a selected set of benchmarks from the
computer language benchmarks game.18 Code generated by GCC19 without optimizations is be-
tween 52% faster and 71% slower (46% slower on average) than TruffleC; code generated with the
highest optimization level of GCC is between 236% faster and 13% slower (38% faster on average)
than TruffleC.

Figure 6 summarizes the performance evaluation of Ref. [24] for TruffleC. The y-axis shows
the performance of code generated by GCC20 without optimizations (GCC_noOpt) and code
generated by GCC with the highest optimization level (GCC_opt) relative to TruffleC where the
outermost lines show the minimum and maximum performance and the inner dot shows the
average performance. The x-axis shows the different language implementations. This evaluation

15Arrays of variable length, GCC the GNU Compiler Collection, 2015: https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.

html.
16Designated initializers, GCC the GNU Compiler Collection, 2015: https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.

html.
17Compound literals, GCC the GNU Compiler Collection, 2015: https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Compound-

Literals.html.
18Computer Langauge Benchmarks Game, 2016: http://benchmarksgame.alioth.debian.org.
19GNU C Compiler, Free Sofware Foundation Inc., 2016: https://gcc.gnu.org.
20GNU C Compiler, Free Sofware Foundation Inc., 2016: https://gcc.gnu.org.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html
https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html
https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Compound-penalty -@M Literals.html
http://benchmarksgame.alioth.debian.org
https://gcc.gnu.org
https://gcc.gnu.org

8:12 M. Grimmer et al.

uses a selected set of benchmarks from the computer language benchmarks game.21 GCC_noOpt
is between 52% faster and 71% slower (46% slower on average) than TruffleC; GCC_opt is between
236% faster and 13% slower (38% faster on average) than TruffleC. A more detailed description of
TruffleC can be found in [22, 24, 26, 27].

3 GENERIC ACCESS

TLIs can use different layouts for objects. For example, the JavaScript implementation allocates
data on the Java heap, whereas the C implementation allocates data on the native heap. Given
the different layouts, each TLI uses language-specific AST nodes to access them. In the context
of this article, we use the term object for a non-primitive entity of a user program, which we
want to share across different TLIs. Examples include data references (such as JavaScript object
references, Ruby object references, or pointers to C allocations) as well as function references.
If a host language LHost accesses one of its own objects, we call this a regular object access. For
example, if the Ruby implementation accesses a Ruby object, the object is considered a regular
object. If it accesses an object of a foreign language LForeign, we call this a foreign object access.
For example, if Ruby (LHost) accesses a C structure, the C structure is considered a foreign object
(C is LForeign). Object accesses are operations that an LHost can perform on objects, e.g., method
calls, property accesses, or field accesses.

Foreign Object Access. TLIs specialize object accesses on the receiver type. For example, TruffleJS
specializes a property access depending on the shape of the receiver object [58] (cf. Section 2). We
extend these specializations by a case for foreign objects. This specialization triggers when a LHost

encounters a foreign object at runtime and a regular object access operation cannot be used. In
such cases, LHost uses generic access to access the foreign object:

Generic access can access every object that implements the common TruffleObject interface.
We implement this interface as a set of messages. To access a foreign object via generic access, LHost

specializes the object access to a language-agnostic node that sends a message. For example, an
LHost can access the members of a TruffleObject by Read and Write messages. The left part of
Figure 7 shows a JavaScript AST snippet that was specialized to generic access and reads the value
property of a foreign object obj using a Read message.

Message Resolution. The first execution of a message node (e.g., the gray node in Figure 7) does
not directly access the receiver object but triggers message resolution: TruffleVM resolves the mes-
sage to a foreign-language-specific AST snippet, i.e., it lets LForeign produce a foreign-language-
specific AST snippet (green nodes in Figure 7) that is inserted into the host AST as a replacement for
the message. This AST snippet depends on the type of the receiver and contains foreign-language-
specific nodes for executing the message on the receiver.

In order to notice an access to an object of a previously unseen foreign language, message res-
olution inserts a guard into the AST that checks the receiver’s language before it is accessed. As
can be seen in Figure 7, message resolution inserts a C struct access node (a TruffleC-specific AST
node that accesses a struct member; in Figure 7, we use the abbreviated label “->” for this node).
Before the AST accesses obj, it checks if obj is really a C object (is C?). If obj is suddenly an ob-
ject of a different language, the execution falls back to sending a Read message again, which will
then be resolved to a new AST snippet for this language. An object access is language polymor-

phic if it has varying receivers originating from different languages. In the language-polymorphic
case, TruffleVM links the different language-specific AST snippets into a chain similar to an inline

21Computer Langauge Benchmarks Game, 2016: http://benchmarksgame.alioth.debian.org.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

http://benchmarksgame.alioth.debian.org

Cross-Language Interoperability in a Multi-Language Runtime 8:13

Fig. 7. Generic access uses messages to access a foreign object; Message resolution replaces the Read message
by a direct access.

cache [30] and therefore avoids a loss in performance. In the megamorphic case, TruffleVM checks
the language of the foreign object and dispatches a call to the foreign-language-specific AST snip-
pets that can access the object. In our case study with three languages, no object access is language

polymorphic.
Message resolution only affects the application’s performance upon the first execution of an ob-

ject access. By generating AST snippets for accessing foreign objects, we avoid compilation barriers
between languages. This allows the compiler to optimize object accesses or to inline method calls,
even if the receiver is a foreign object. Widening the compilation unit across different languages
is important [2, 49] as it enables the compiler to apply optimizations to a wider range of code.

Primitive Types. The TruffleVM defines a set of shared primitive types to exchange primitive val-
ues across languages. We refer to such values as shared primitives. The shared primitive types in-
clude all Java built-in types, such as all number classes that extend java.lang.Number and also the
java.lang.String type. A TLI maps its language-specific primitive values to shared primitive val-
ues and exchanges them as language-neutral values. Vice versa, a TLI maps shared primitive values
to language-specific values. Using this set of types works well for TLIs because TLIs are themselves
written in Java; hence, the TLIs already map the primitive types of the guest language to Java types.

We identified the following properties of TruffleVM as critical requirements for generic access:

—Compatible and adaptive ASTs: Message resolution embeds AST snippets from a foreign
TLI into the AST of a host TLI at runtime, which requires that the ASTs are compatible,
inter-mixable, and can rewrite themselves.

—Sharable data: The data structures used by TLIs to represent the data of an application need
to be accessible by all language implementations.

—Dynamic compilation: Graal compiles the ASTs of a (possibly multi-language) program to
highly efficient machine code at runtime. It inserts deoptimization points that invalidate
the machine code whenever generic access would change the AST of an application.

4 CASE STUDIES

In this section, we present two case studies. First, we show an implementation of generic access for
JavaScript, Ruby, and C and explain how we compose these languages. Second, we describe how

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

8:14 M. Grimmer et al.

Fig. 8. TLIs can import and export objects from and to a multi-language scope.

Listing 4. This C snipped exports the variable obj which points to a struct of type S.

Listing 5. This JavaScript snipped imports a variable obj and accesses its value member.

we implement the C extensions API for Ruby. We use generic access to provide an implementation
for this interface, which allows us to run existing production-code.

4.1 Interoperability between JavaScript, Ruby, and C

TruffleVM can execute programs that are written in multiple languages. Programmers use differ-
ent files for different programming languages. For example, if parts of a program are written in
JavaScript and C, these parts are in different files. Distinct files for each programming language
allow us to reuse the existing unmodified parsers of each language implementation to transform
source code to Truffle ASTs (TruffleJS uses the parser of Nashorn, TruffleRuby uses JRuby’s parser,
and TruffleC uses the Clang frontend). The combination of multi-language code parts in a single
source file is out of scope for this work, although it would be possible in principle [3, 29].

Programmers can export data and functions to a multi-language scope and also import data and
functions from this scope. Figure 8 shows that all TLIs access this multi-language scope, which
allows programmers to share data and functions among languages. JavaScript, Ruby, and C use
Truffle built-ins to export and import data to and from the multi-language scope. For example the
C code of Listing 4 exports the C struct obj to the multi-language scope and the JavaScript code
of Listing 5 imports it.

Implicit Foreign Object Accesses. TruffleVM allows programmers to access foreign objects trans-
parently. If the host TLI encounters a foreign object at runtime and a regular object access operation
cannot be used, then the host TLI specializes the object access to generic access. It hereby maps
the host-language-specific operation to a language-independent message, which is then mapped
back to a foreign-language-specific operation by the foreign TLI. In the following, we describe this
transformation.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:15

TLIs transform source code to a tree of nodes, i.e., an AST. NA and N B define finite sets of
nodes of TLIs A and B. Each node has r : NA → N children, where N denotes the set of natural
numbers. If n ∈ NA is a node, then r (n) is the number of its children. We call nodes with r = 0 leaf

nodes. For example, nodes that represent constants and labels are leaf nodes. An AST t ∈ TN A is
a tree of nodes n ∈ NA. By n(t1, . . . , tk), we denote a tree with root node n ∈ NA and k sub-trees
t1, . . . , tk ∈ TN A , where k = r (n).

For this case study, we define the following set of messages, which are modeled as Truffle nodes
NMsg:

NMsg = {Read,Write,Execute,Unbox, IsNull} (1)

If TLI A encounters a foreign object at runtime and a regular object access operation cannot be
used, then TLI A maps the AST with the language-specific object access t ∈ TN A to an AST with a
language-agnostic object access t ′ ∈ TN A∪N Msg using the function fA:

TN A

fA−−→ TN A∪N Msg (2)

We use the function fA when specializing an object access to generic access. The tree t ′ ∈ TN A∪N Msg

consists of language-specific nodes NA and message nodes NMsg. The other parts of the AST t
remain unchanged. A host language that accesses foreign objects has to define this function f .

In the following, we describe the messages n ∈ NMsg, which we use for this case study. The
sub-trees t1, . . . , tk ∈ TN A∪N Msg of n(t1, ..., tk) evaluate to the arguments of the message n.

—Read: TLIs use the Read message to access a field of a foreign object or an element of a
foreign array. It can also be used to access methods of classes or objects, i.e., to look up
executable methods from classes and objects.

Read(trec, tid) ∈ TN A∪N Msg (3)

The first subtree trec denotes the receiver of the Read message; the second subtree tid denotes
the name of the field or the index of the array element.

Consider the example in Figure 7 (a property access obj.value in JavaScript, see List-
ing 5). The function f J S maps the JavaScript-specific object access JSReadProperty to a Read

message at runtime if JavaScript suddenly encounters a foreign object.

JSReadProperty(tobj, tvalue)
f J S�−−→ Read(tobj, tvalue) (4)

—Write: A TLI uses the Write message to set the field of a foreign object or the element of a
foreign array. It can also be used to add or change the methods of classes and objects.

Write(trec, tid, tval) ∈ TN A∪N Msg (5)

The first subtree trec denotes the receiver of the Write message, the second subtree tid the
name of the field or the index of the array element, and the third subtree tval the written
value.

—Execute: TLIs use an Execute message to execute a foreign method or function.

Execute(tf, t1, . . . , ti) ∈ TN A∪N Msg (6)

The first subtree tf denotes the function/method itself, the other subtrees t1, . . . , ti denote
the arguments.

—Unbox: Programmers often use an object type to wrap a value of a primitive type in order
to make it look like a real object. An Unbox message unwraps such an object and produces

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

8:16 M. Grimmer et al.

a primitive value. TLIs use this message to unbox a boxed value whenever a primitive value
is required.

Unbox(trec) ∈ TN A∪N Msg (7)

The subtree trec denotes the receiver object.
— IsNull: Many programming languages use null/nil for an undefined, uninitialized, empty,

or meaningless value. The IsNull message allows the TLI to do a language-agnostic null-
check.

IsNull(trec) ∈ TN A∪N Msg (8)

The subtree trec denotes the receiver object.

As part of message resolution, TruffleVM maps the host AST with a language-agnostic access
t ′ ∈ TN A∪N Msg to an AST with a foreign-language-specific access t ′′ ∈ TN A∪N B using the function
дB , which is defined by LForeign:

TN A∪N Msg

дB−−→ TN A∪N B (9)

Message resolution produces an AST that consists of nodes NA ∪ N B . The other nodes of t ′ re-
main unchanged. With respect to the example in Figure 7, TruffleVM uses the function дC (defined
by TruffleC) and replaces the Read message with a C-specific struct access operation upon its
first execution. If the receiver is a pointer to a C struct, then TruffleC maps a Read message to a
CMemberRead node (node “->” in the AST):

Read(tobj, tvalue)
дC�−−→ CMemberRead(IsC(tobj), tvalue) (10)

The result is a JavaScript AST (orange nodes in Figure 7) that embeds a C access operation
t ′′ ∈ TN JS∪N C (green nodes). During further executions of the AST, the receiver object is accessed
directly rather than by a message. Since the value of obj might change at runtime to represent an
object of a language other than Cm, message resolution inserts a guard into the AST that checks
the receiver’s type before it is accessed. This is shown in Figure 7 where message resolution inserts
a node that checks if obj is a C object.

We can achieve a seamless foreign object access by mapping host-language access operations

to messages, which are then mapped back to foreign-language-specific operations. The function fA
maps the AST t to an AST t ′ ∈ TN A∪N Msg that uses a message to access the foreign object. The
foreign language defines the function дB that maps t ′ to an AST t ′′ ∈ TN A∪N B with a foreign-
language-specific object access:

TN A

fA−−→ TN A∪N Msg

TN A∪N Msg

дB−−→ TN A∪N B

(11)

TruffleVM composes TLIs automatically by composing fA and дB at runtime:

дB ◦ fA : TN A → TN A∪N B (12)

It creates an AST t ′′ ∈ TN A∪N B where the main part is specific to language A and the foreign object
access is specific to language B. When composing fA and дB three different cases can occur:

(1) IfдB is defined for t ′ ∈ TN A∪N Msg , a foreign object can be accessed seamlessly. The language
B can replace the language-agnostic object access with a foreign-language-specific access.

(2) IfдB is not defined for t ′ ∈ TN A∪N Msg , we report a runtime error with a high-level diagnostic
message. The foreign object access is not supported. For example, if JavaScript accesses
the length property of a C array, we report an error. C cannot provide length information
for arrays.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:17

Listing 6. Array allocation in JavaScript.

Listing 7. C code accessing the length property of an array.

(3) A foreign object access might not be expressible in A, i.e., one wants to create t ′ ∈
TN A∪N Msg , but language A does not provide syntax for this access. For example, a C pro-
grammer cannot access the length property of a JavaScript array. In this case one has to
fall back to an explicit foreign object access (see below).

Compared to other approaches that use an explicit API for every interaction with a foreign lan-
guage, our approach is simpler. It makes the mapping of access operations to messages largely
the task of the language implementer rather than the task of the application programmer. Pro-
grammers are not forced to write boilerplate code as long as an object access can be mapped from

language A to language B (t
fA�−−→ t ′

дB�−−→ t ′′) via generic access. Only if not otherwise possible, pro-
grammers can use explicit generic access to access foreign objects.

Explicit Foreign Object Access. A host language might not provide syntax for a specific foreign
object access. Consider the JavaScript array arr of Listing 6, which is used in a C program. C
does not provide syntax for accessing the length property of an array. To overcome this issue,
we provided an interface to the programmer that allows using explicit generic access. Using this
interface, the programmer can fall back to an explicit foreign object access. In other words, this
interface allows programmers to handcraft the foreign object access of t ′ ∈ TN A∪N Msg .

Every TLI has an API to use explicit generic access. For example, to access the length property of
a JavaScript array (see Listing 6) from C (see Listing 7), the programmer uses the TruffleC-built-in
C function Read_int32. The C implementation substitutes this Read_int32 invocation by a Read

message.

4.1.1 Implementation of Generic Access. In the following, we discuss how we implement generic

access for JavaScript, Ruby, and C. We explain how each language maps host-type-specific object
accesses to messages and vice versa.

TruffleJS. JavaScript is a prototype-based scripting language with dynamic typing. It is almost
completely object-oriented. JavaScript objects are associative arrays that have a prototype, which
corresponds to their dynamic type. Object property names are string keys and it is possible to
add, change, or delete properties of an object at runtime. In TruffleJS, all objects are shareable
in the sense that they support generic access. TruffleJS maps property accesses to Read and Write

messages. Functions are first-class objects. TruffleJS maps a function call to an Execute message.
Method invocations on objects are mapped to a sequence of Read and Execute message. It maps
incoming numeric primitive values to objects of type Number, i.e., JavaScript’s type for representing
number values. Also, TruffleJS unboxes (using the Unbox message) boxed foreign primitive values
(e.g., Ruby’s Float) and maps them to objects of type Number. Number objects support the Unbox

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

8:18 M. Grimmer et al.

Listing 8. Excerpt of the built-ins (Truffle-object methods) for JavaScript.

message, which allows sharing them among other languages. Unbox maps the value to a numeric
shared primitive.

The implementation of generic access for TruffleJS also introduces a built-in object called
Truffle (see Listing 8). The Truffle object defines functions for importing and exporting ob-
jects from and to the multi-language scope. Also, it defines functions to explicitly access foreign
objects. TruffleJS substitutes every call to these functions by a generic access or a multi-language
scope access.

TruffleRuby. The Ruby language is heavily inspired by Smalltalk; hence, in Ruby there are no
primitive types. Every value—including numeric values—is represented as an object. Operations
(e.g., arithmetic operations) as well as data access operations (accessing object attributes or ar-
ray elements) are modeled as function calls on the receiver object. For example, Ruby arrays or
hashes provide a setter method []= to set an element of a Ruby array or hash. We map getter
and setter invocations (functions [] and []=) to Read and Write messages. In TruffleRuby, all data
objects as well as all methods support generic access and are therefore sharable. TruffleRuby maps
incoming primitive values to objects of numeric type Fixnum and Float if this is possible without
loss of information (e.g., no truncation or rounding). These objects are also sharable with other
languages, i.e., they support the Unbox message. This message simply maps the boxed value to
the corresponding shared primitive. For example, a host language other than Ruby might use an
Unbox message whenever it needs the object’s value for an arithmetic operation.

Similar to TruffleJS, TruffleRuby defines a built-in class Truffle, which allows exporting and
importing variables to and from the multi-language scope and to explicitly access foreign objects.

TruffleC. TruffleC can share primitive C values, mapped to shared primitive values, as well as
pointers to C data with other languages. In our implementation, pointers are objects that support
generic access, which allows them to be shared across all TLIs. TruffleC represents all pointers (i.e.,
pointers to values, arrays, structs, or functions) as CAddress objects that wrap a 64-bit value.
This value is a pointer to the native heap. Besides the address value, a CAddress object also stores
type information about the pointee. Depending on the type of the pointee, TruffleC resolves the
following messages: A pointer to a C struct can resolve Read/Write messages, which access mem-
bers of the referenced struct. A pointer to an array can resolve Read/Write messages that access
a certain array element. Any pointer can resolve the IsNull message, which checks whether the
pointer is a null-pointer. Finally, CAddress objects that reference a C function can be executed
using the Execute message. TruffleC can bind CAddress objects as well as shared foreign objects
to pointer variables and uses generic access to operate on these foreign objects.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:19

Listing 9. C int expression that reads from a foreign object.

Listing 10. Excerpt of the truffle.h header file.

C is a statically typed language and every expression has a static type. Hence, if TruffleC accesses
a foreign object and the access expression has a primitive type, TruffleC tries to convert the result
to a value that has the same type as the expression. Consider the following example (Listing 9):

TruffleC converts the result of arr[0] to a C int value. It directly converts shared primitive
values to int values if this is possible without loss of information. If the result is a TruffleObject,
TruffleC uses Unbox and then does the conversion. If a conversion is not possible, TruffleC raises
a runtime error and reports the type-incompatibility.

The implementation of generic access for TruffleC also introduces the header file truffle.h (see
Listing 10), which defines functions for importing and exporting objects from and to the multi-
language scope as well as functions for explicitly accessing foreign objects. There are different
versions of these functions for all primitive C types. For example, there is a function Read_int32
that reads from a foreign object and tries to convert the result to an int value. None of the functions
that are defined in truffle.h have an implementation in C. Instead, TruffleC substitutes every
invocation by a generic access or a multi-language scope access.

For further reference, we provide a detailed table that lists all mappings from language-specific
operations to messages and vice versa.22 Also, we point interested readers to the Java documenta-
tion of the generic access API in Truffle.23

4.1.2 Different Language Paradigms and Features. In this section, we describe an intuitive ap-
proach for bridging the different paradigms and features of JavaScript, Ruby, and C. We focus on
these languages and explain how we deal with dynamic and static typing, object-oriented and non-
object-oriented programming, explicit and automatic memory management, as well as with safe
and unsafe memory accesses. For this discussion, consider a multi-language application, which
consists of two files. The first file (Listing 11) contains JavaScript code and the second file (List-
ing 12) contains C code. The example allocates a JavaScript object (the counter object, see List-
ing 11), which is then used by the C code (see Listing 12). The JavaScript code exports the object
counter using the built-in function export, stores the reference to the JavaScript object into the

22Mapping of messages to language-specific operations and vice versa, Grimmer, 2017: http://ssw.jku.at/General/Staff/

Grimmer/TruffleVM_table.pdf.
23Truffle JavaDoc, Oracle, 2017: http://lafo.ssw.uni-linz.ac.at/javadoc/truffle/latest/.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

http://ssw.jku.at/General/Staff/Grimmer/TruffleVM_table.pdf
http://lafo.ssw.uni-linz.ac.at/javadoc/truffle/latest/

8:20 M. Grimmer et al.

Listing 11. Allocation of a JavaScript object.

Listing 12. C type definition for the foreign object and an object-oriented access operation.

multi-language scope of the application. On the opposite side, the C code imports the object using
the C built-in function import, defined in truffle.h.

Ruby and JavaScript are more similar (both languages are dynamically typed, object-oriented,
and use the automatic memory management of TruffleVM). To keep the example simple, we write
this application in JavaScript and C. However, the following ideas also apply for Ruby.

Dynamic and Static Typing. Wrigstad et al. [59] describe a concept called like types, which allows
integrating dynamically typed objects in statically typed languages. Dynamically typed objects can
be used in a statically typed language by binding them to like-type variables. Operations on like-
type variables are syntactically and semantically checked against the static type of these variables,
but their actual validity is only checked at runtime. Our approach is similar, except that we bind
foreign dynamically typed objects to pointer variables that are associated with static type infor-
mation (e.g., Counter*). Whenever an operation is performed on such a pointer (e.g., a property
access), we check dynamically whether this operation is valid on the foreign object and report an
error otherwise.

Listing 12 shows a C program, which uses a JavaScript object counter. The C code associates
the variable c with the static type Counter*. When the C code accesses the JavaScript object, we
check dynamically whether add or myPrint exist and report an error otherwise.

Object-Oriented and Non-Object-Oriented Programming. Object-oriented languages allow pro-
grammers to create objects that contain both data and code, known as fields and methods. Also,

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:21

objects can extend each other using class-based or prototype-based inheritance. When accessing
fields or methods, the object does a lookup and provides a field value or a method. Generic access

allows us to retain the object-oriented semantics of an object access even if the host language is not
object-oriented. Consider the add method invocation (from C to JavaScript) in Listing 12. TruffleC
maps this access to the following messages:

CCall(CMemberRead(tc, tadd), tc, t42)
fC�−−→ Execute(Read(tc, tadd), tc, t42)

(13)

TruffleJS resolves this access to an AST snippet that does the lookup of method add and executes
it:

Execute(Read(tc, tadd), tc, t42)
дJ S�−−−→ JSCall(IsJS(JSReadProperty(IsJS(tc), tadd)), tc, t42)

(14)

A method call in an object-oriented language passes the this object (i.e., the receiver) as an implicit
argument. Non-object oriented languages that invoke methods therefore need to explicitly pass
the this object. For example, the JavaScript function add (see Listing 11) expects the this object
as an implicit first argument. Hence, the first argument of the add method call in C is the this
object c.

Vice versa, the signature of a non-object-oriented function needs to contain the this object
argument if the caller is an object-oriented language. For example, if JavaScript calls a C function,
JavaScript automatically passes the this object as the first argument. The signature of the C func-
tion therefore needs to add the this object as an explicit argument to its signature. This approach
allows us to access object-oriented data from a non-object-oriented language and vice versa.

Our current approach does not feature cross-language inheritance, i.e., class-based inheritance
or prototype-based inheritance is only possible with objects that originate from the same language.

Explicit and Automatic Memory Management. TLIs are running within TruffleVM and can ex-
change data, independent of whether the data is managed or unmanaged: TLIs keep unmanaged
allocations on the native heap, which is not garbage collected. For example, TruffleC allocates data
on the native heap. However, it represents all pointers to such data (i.e., pointers to values, arrays,
structures, and functions) as managed Java objects of type CAddress that wrap a 64-bit native
address [27] and attach type information to it. TruffleC uses this type of information to resolve a
generic access message to a CAddress object in such a way that an AST snippet is returned which
directly accesses the raw data stored on the native heap. The generic access thus allows accessing
unmanaged data from a language that otherwise only uses managed data. The JavaScript and Ruby
implementations allocate objects on the Java heap. If an application binds a managed object to a
C variable, TruffleC keeps this variable as a Java object of type Object. Thus, the Java garbage
collector can trace managed objects even if they are referenced from unmanaged languages.

If a C pointer variable references an object of a managed language, operations are restricted.
First, pointer arithmetic on foreign objects is only allowed as an alternative to array indexing. For
example, C programmers can access a JavaScript array either with indexing (e.g., jsArray[1])
or by pointer arithmetic (*(jsArray + 1)). However, it is not allowed to manipulate a pointer
variable that is bound to a managed object in any other way (e.g. jsArray = jsArray + 1).
Second, C pointer variables that are bound to managed objects cannot be casted to primitive values
such as long or int. References to the Java heap cannot be represented as primitive values like it is
possible for raw memory addresses. Finally, unmanaged data structures cannot store references to
managed objects. For example, it is not possible to assign a reference to a managed JavaScript object
to a C array of pointers. In other words, Counter *array[] = {jsReference}; is forbidden.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

8:22 M. Grimmer et al.

Fig. 9. Architecture of a Ruby application using C extensions.

Non-primitive C data is stored as a sequence of bytes on the native heap and it is not possible to
keep managed references on the native heap. We report a runtime error in such cases.

Safe and Unsafe Memory Accesses. C is an unsafe language and does not check memory accesses
at runtime, i.e., there are no runtime checks that ensure that pointers are only dereferenced if they
point to a valid memory region and that pointers are not used after the referenced object has been
deallocated. TruffleC allocates data on the native heap and uses raw memory operations to access
it, which is unsafe. This has the following implications on multi-language applications:

If C shares data with a safe language, all access operations are unsafe. For example, accessing
a C array from a JavaScript program is unsafe. If the index is out of bounds, the access has an
undefined behavior (as defined by the C specification). On the other hand, accessing a C array is
more efficient than accessing a dynamic JavaScript array because less runtime checks are required.

Accessing data structures of a safe language (such as a JavaScript array) from C is safe. TruffleC
implements the access by a Read or Write message, which TruffleJS resolves with operations that
check if the index is within the array bounds and grow the array in case the access was out of
bounds.

TruffleVM, including the TLIs for JavaScript, Ruby, and C, eases an efficient multi-language
development, which we evaluated by writing and executing multi-language benchmarks (see Sec-
tion 5). We modified single-language benchmarks, which are available in C, Ruby, and JavaScript,
such that parts of them were written in a different language. The only extra code that we needed
was for importing and exporting objects from and to the multi-language scope.

4.2 C Extensions Support for TruffleRuby

In this second case study, we implemented the C extensions API for Ruby. A C extension is a C
program that can access the data and metadata of a Ruby program by using a set of API functions (C
extension functions), which are part of the Ruby VM MRI. Developers of a C extension for Ruby get
access to this API by including the ruby.h header file. The C extension code is then dynamically
loaded and linked into the Ruby VM when the Ruby program starts to run. Figure 9 gives an
architectural overview of a Ruby application using a C extension.

We provide the same C extensions API as the Ruby MRI does, i.e., we provide all functions that
are declared in ruby.h. To do so, we created our own implementation of ruby.h, which contains
the function signatures of all the C extension functions. Listing 13 shows an excerpt of this header
file including a description of the functions’ semantics. In the following, we discuss how we can
provide an implementation for these functions. We distinguish between local and global functions
in the C extensions API. Local functions access and manipulate Ruby objects from within C. Global
functions manipulate the global object of a Ruby application from C or directly access the Ruby
engine.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:23

Listing 13. Excerpt of the ruby.h implementation.

4.2.1 Local Functions. TruffleC has knowledge about the C extension functions and substitutes
every call to a local C extension function with a message in the AST that accesses the foreign Ruby
data (we are using the same set of messages as in our first case study; see Section 4.1). The result
is an AST t ′ ∈ TN C∪N Msg , which uses messages to access the foreign object rather than calling a
function of the C extensions API.

TruffleVM can resolve these messages because TruffleRuby provides a mapping дRb. Message
resolution uses дRb to map the messages in t ′ ∈ TN C∪N Msg to an AST with a Ruby-specific access
t ′′ ∈ TN C∪N Rb :

TN C∪N Msg

дRb−−→ TN C∪N Rb (15)

The function to resolve the messages to Ruby-specific access operations (дRb) remained unchanged
and we were able to reuse the infrastructure that was already implemented in TruffleRuby.

The following examples explain how we substitute the C extension functions rb_ary_store,
rb_funcall, and FIX2INT.

—rb_ary_store allows writing an element of a Ruby array. Figure 10 shows how TruffleC
substitutes the call of rb_ary_store (see source code in Listing 14) with a Write message for
setting the Ruby array element. Upon first execution, this message is resolved by TruffleVM,
which results in a TruffleC AST that does a Ruby array access via a setter function ([]=).
The resolved AST replaces the AST for the Write message and is executed from now on.

—rb_funcall allows invoking a method on a Ruby object from within a C extension. TruffleC
substitutes this call with two messages, namely, a Read message to get the method from the
Ruby receiver and an Execute message, which invokes the method.

—FIX2INT transforms a Ruby Fixnum object to a C integer value. TruffleC substitutes this call
with an Unbox message to the Ruby object.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

8:24 M. Grimmer et al.

Fig. 10. TruffleC substitutes invocations of C extension functions with messages; TruffleVM resolves them
to Ruby-specific operations.

Listing 14. Accessing a Ruby array from C.

4.2.2 Global Functions. The C extensions API also offers functions that manipulate the global
object class of a Ruby application from C. For example, these functions can define global variables,
modules, or functions. Global functions can also directly access the Ruby engine (e.g., to convert a
C string to an immutable Ruby object). TruffleC forwards invocations of these global C extension
functions to functions of the TruffleRuby engine.

In the following, we discuss how TruffleC implements calls to rb_define_method and
rb_intern.

—rb_define_method allows defining a new method in a Ruby class. To substitute an invo-
cation to this function, TruffleC directly accesses the Ruby engine and adds a C function
pointer to a Ruby class object. The function pointer VALUE(*func) () is a CAddress ob-
ject, which references a TruffleC AST. When TruffleRuby invokes this method later, it uses
generic access, i.e., it replaces a regular Ruby call with an Execute message. This message is
then resolved to a TruffleC function call upon first execution.

—rb_intern provides a shared immutable Ruby object representation for a C string. Truf-
fleRuby exposes a utility function that allows resolving these immutable Ruby strings,
which TruffleC uses to substitute invocations of this methods.

4.2.3 Pointers to Ruby Objects. A pointer to a Ruby object is modeled in TruffleC as a Java ref-
erence to a TruffleObject. If the C program introduces additional indirection by applying the
address-of operator (&) to a Ruby object reference, TruffleC creates an MAddress object (which
itself extends TruffleObject; M stands for managed). MAddress objects wrap the foreign pointee,
i.e., TruffleC uses MAddress objects to represent pointers to foreign objects. These objects allow
achieving arbitrary levels of indirection. However, C also allows pointer arithmetic. This is fre-
quently used in Ruby C extensions, as the API allows a pointer to be obtained to internal data

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:25

structures such as the C array that backs a Ruby string or array. It is then common to iterate di-
rectly over these arrays using pointers rather than Ruby API functions, in order to achieve higher
performance. To support pointer arithmetic in TruffleC, an MAddress also holds an offset from
the address of the pointee (i.e., the Ruby object). Pointer arithmetic just modifies this offset. Any
dereferencing of this MAddress will use the same messages to read or write from the object as a
normal array access would.

4.2.4 Discussion. We claim that TruffleVM eases an efficient multi-language development that
also supports legacy interfaces between languages. In this case study, we presented an implemen-
tation of the C extensions API using generic access. We provided an implementation that allowed
us to run Ruby code with C extensions that had been developed for real business applications
(see also Section 5). We were able to successfully execute the existing modules chunky_png24 and
psd.rb25, which are both open source and freely available on the RubyGems website. chunky_png
is a module for reading and writing image files using the Portable Network Graphics (PNG) for-
mat. It includes routines for resampling, PNG encoding and decoding, color channel manipulation,
and image composition. psd.rb is a module for reading and writing image files using the Adobe
Photoshop format. It includes routines for color space conversion, clipping, layer masking, imple-
mentations of Photoshop’s color blend modes, and some other utilities. Running the C extensions
of these gems on top of TruffleVM required the following modifications for compatibility: TruffleC
does not support variable-length arrays, hence, we replaced two instances of variable size stack
allocations with a heap allocation via malloc and free. Running the C extensions on TruffleC also
allowed us to find two bugs. A value of type VALUE (64-bit pointer value) was stored in a variable
of type int (32-bit integer value), which caused different results between the Ruby module and
the C extensions on all Ruby implementations. We have reported this implementation bug to the
module’s authors.26 Apart from these minor modifications we are running all native routines from
the two non-trivial gems unmodified.

5 PERFORMANCE EVALUATION

This section presents a performance evaluation of individual parts of TruffleVM. We present bench-
marks that combine different languages and show that combining a slower language with a faster
one yields an overall performance that is somewhere in the middle. We show that the C exten-
sions API implementation with generic access runs benchmarks faster than all other Ruby imple-
mentations using C extensions. We also demonstrate that message resolution and cross-language
inlining are essential for the performance of an application by measuring the effect of temporarily
disabling them. We evaluate the composition of languages on top of TruffleVM with two different
performance measurements.

First, we want to evaluate the performance of multi-language applications. Every language im-
plementation can define efficient data representations, which can be shared across different lan-
guages. Generic access ensures that a TLI can directly access foreign objects. We expect using for-
eign data that are implemented in a TLI with slow access to have a negative effect on performances.
On the other hand, we expect using foreign data that are implemented in a TLI with fast access to
have a positive effect on performance. Accessing a Ruby array in C is less efficient than accessing a
C array because Ruby arrays require more runtime checks. Accessing a C array in Ruby, however,
is more efficient because a C array access performs a raw memory access without runtime checks.
Message resolution inserts foreign-language-specific access operations into the AST of a host

24Chunky PNG, Willem van Bergen and others, 2015: https://github.com/wvanbergen/chunky_png.
25PSD.rb from Layer Vault, Ryan LeFevre, Kelly Sutton and others, 2015: https://cosmos.layervault.com/psdrb.html.
26PSDNative, Bug report, 2015: https://github.com/layervault/psd_native/pull/4.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

https://github.com/wvanbergen/chunky_png
https://cosmos.layervault.com/psdrb.html
https://github.com/layervault/psd_native/pull/4

8:26 M. Grimmer et al.

application. However, it also inserts a language and type check before the foreign object is ac-
cessed. The dynamic compiler can often eliminate this additional check, which is discussed in
more detail later. Furthermore, we claim that inlining across language boundaries as well as cross-
language optimizations are critical for performance. We evaluate this claim by disabling message
resolution. When disabling message resolution, LHost still uses generic access to access foreign ob-
jects, but TruffleVM does not replace the messages in t ′ ∈ TN A∪N Msg . Rather, it uses LForeign to
locally execute the access operation and return the result. In other words, LHost treats LForeign as a
black box, which introduces a language boundary.

Second, we compare the performance of TruffleVM to the C extensions API implementations of
MRI, Rubinius, and JRuby. We claim that TruffleVM can run C extension functions on average over
two times faster than natively compiled C code using MRI’s C extensions API. In our evaluation,
we back this claim and run image processing libraries that are implemented as C extensions. Also,
we state that cross-language inlining and cross-language optimizations are the factors from which
TruffleRuby benefits most compared to other Ruby implementations. Hence, we disable message
resolution to verify this claim.

5.1 Evaluation Methodology

To account for the adaptive compilation techniques of Truffle and Graal, we set up a harness that
executes each benchmark 50 times. After these warm-up iterations, every benchmark reaches a
steady state such that subsequent iterations measure the fully optimized program and are identi-
cally and independently distributed. This was verified informally using lag plots [34]. We then sam-
pled 10 iterations and calculated the averages for each configuration using the arithmetic mean.
Where we report an error, we show the standard deviation. Where we summarize across different
benchmarks, we report a geometric mean [17]. Our harness reports scores for each benchmark and
its configurations. The score is the proportion of the execution count of the benchmark and the
time needed (executions per second). We ran the multi-language benchmarks on an Intel Core i7-
4770 quad-core 3.4GHz CPU running 64-bit Debian 7 (Linux3.2.0-4-amd64) with 16GB of memory.
The C extensions benchmarks are long-running applications and the measurement takes several
days. Therefore, we ran these benchmarks on a different hardware. We used a server machine with
2 Intel Xeon E5345 processors with four cores each at 2.33GHz and 64GB of RAM, running 64-bit
Ubuntu Linux 14.04.

We focus this evaluation on peak performance of long-running applications where the start-
up performance plays a minor role. Hence, we consider start-up performance to be out of scope
and present performance numbers after an initial warm-up. A detailed evaluation of the start-up
performance of Truffle can be found in Ref. [40].

5.2 Truffle Language Implementation Composition

In this section, we evaluate the peak performance of multi-language applications running on top
of TruffleVM.

5.2.1 Interoperability between JavaScript, Ruby, and C. For this evaluation we used benchmarks
that heavily access objects and arrays. The benchmarks (the SciMark benchmarks27 and bench-
marks from the Computer Language Benchmarks Game28) compute a Fast Fourier Transformation
(FFT), a Jacobi successive over-relaxation (SOR), a Monte Carlo integration (MC), a sparse matrix
multiplication (SM), a dense LU matrix factorization (LU), sort an array using a tree data structure

27SciMark 2.0, Roldan Pozo and Bruce R Miller, 2015: http://math.nist.gov/scimark2/index.html.
28The Computer Language Benchmarks Game, Brent Fulgham and Isaac Gouy, 2015: http://benchmarksgame.alioth.debian.

org/.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

http://math.nist.gov/scimark2/index.html
http://benchmarksgame.alioth.debian.org/

Cross-Language Interoperability in a Multi-Language Runtime 8:27

Fig. 11. Performance of individual languages on our benchmarks (normalized to C performance; higher is
better).

(TS), generate and write random DNA sequences (FA), and solve the towers of Hanoi problem
(TW).

First, we compare the performance of the individual TLIs on our benchmarks. For that, we trans-
lated the C version of our benchmarks to JavaScript and Ruby. Having the exact same benchmark
implemented in different languages guarantees a fair performance comparison. The results in Fig-
ure 11 are normalized to the TruffleC performance.

Second, we ran the multi-language version of our benchmarks. We modified every C, JavaScript,
and Ruby benchmark such that all array and object allocations were extracted into factory func-
tions. We then implemented these factory functions in the other two languages arriving at multi-
language benchmarks in which C, JavaScript, or Ruby programs call factory functions in C,
JavaScript, or Ruby (in any combination). For example, a C program whose allocation factory
functions are written in JavaScript works with JavaScript objects. The SciMark benchmarks (FFT,
SOR, MC, SM, LU) already had factory functions for all allocations and it was easy to replace
these functions with versions that are written in different languages. For TS, we implemented the
allocation of the tree data structure in different languages. The FA benchmark was modified in
a sense that the DNA data structures were allocated using different languages. Finally, the TW
benchmark also allocates the tower data structures using different languages. We grouped our
evaluations such that their main part was either written in C, in JavaScript, or in Ruby. For each
group, we used the single-language implementation as the baseline (i.e., factory methods written
in the same language as the main program) and show how multi-language applications perform
compared to single-language applications. The x-axis of each chart in Figures 11, 12, 13, 14, and 16
shows the different benchmarks. The y-axis of each chart shows the average scores of the bench-
marks (higher is better). We based TruffleVM on Graal revision bf586af6fa0c.

Results of Single-Language Benchmarks. Figure 11 shows that JavaScript code is on average 37%
slower and Ruby code is on average 67% slower than C code. C is efficient because C data ac-
cesses do not require runtime checks (such as array bounds checks), but the memory is accessed

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

8:28 M. Grimmer et al.

Fig. 12. Main part in C; allocations in different languages (normalized to pure TruffleC performance; higher
is better).

Fig. 13. Main part in JavaScript; allocations in different languages (normalized to pure TruffleJS performance;
higher is better).

directly. This efficient data access makes C the fastest language for most benchmarks. However,
if a program allocates data in a frequently executed part of the program, the managed languages
(JavaScript and Ruby) can outperform C. Allocations in TruffleC (using calloc) are more expen-
sive than the instantiation of a new object on the Java heap. TruffleC does a native call to execute
the calloc function of the underlying OS. TruffleJS or TruffleRuby allocate a new object on the Java
heap using sequential allocation in thread-local allocation buffers, which explains why JavaScript

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:29

Fig. 14. Main part in Ruby; allocations in different languages (normalized to pure TruffleRuby performance;
higher is better).

and Ruby perform better than C on TS. This benchmark allocates data in a hot loop. The Ruby
semantics require that Ruby objects are accessed via getter or setter methods. TruffleRuby uses
a dispatch mechanism to access these methods. This dispatch mechanism introduces additional
runtime checks and indirections, which explains why Ruby is in general slower than JavaScript
or C.

Results of Multi-Language Benchmarks. The multi-language versions of our benchmarks heavily
access foreign objects:

—C Objects: C data structures are unsafe; access operations are not checked at runtime,
which makes them efficient in terms of performance. Hence, using C data structures from
JavaScript or Ruby applications improves the runtime performance. However, an allocation
with calloc is more expensive than an allocation on the Java heap. Thus, factory functions
in JavaScript or Ruby perform better than factory functions written in C.

—JS Objects: TruffleJS uses an object implementation where each access involves runtime
checks. Examples of such checks are array bounds checks to dynamically grow JavaScript
arrays or property access checks to dynamically add properties to an object. These checks
are the reason why accesses to JavaScript objects perform worse than accesses to C objects.

—Ruby Objects: TruffleRuby’s dispatch mechanism for accessing objects introduces a per-
formance overhead compared to JavaScript and even more so to C. According to the Ruby
semantics, TruffleRuby invokes getter and setter methods to access the data. This additional
indirection is the reason why accesses to Ruby objects are in general slower than accesses
to JavaScript objects or C objects.

We can show that the performance of a multi-language program mainly depends on the per-
formance of the individual language parts. Using JavaScript or Ruby data from C programs has a
negative impact on the overall performance. Figures 12 and 13 show that using Ruby objects from
C or JavaScript programs causes an overhead of up to 86%. On average, using Ruby data from

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

8:30 M. Grimmer et al.

Fig. 15. Language boundaries are completely transparent to the compiler.

C causes a performance overhead of 60% and using Ruby data from JavaScript causes a perfor-
mance overhead of 45%. On the other hand, using efficient foreign data has a positive effect on
performance. For example, Figures 13 and 14 show that using efficient C data from JavaScript or
Ruby programs can improve performance by up to 322%. On average, using C data improves the
JavaScript performance by 29% and the Ruby performance by 85%.

TruffleVM does not marshal objects at the language boundary but directly passes them from one
language to another and the TLIs use generic access to access them. Message resolution only affects
the application’s performance upon the first execution of an object access. Message resolution in-
tegrates AST snippets from different languages and thus creates a uniform AST (see Figure 15)
that allows the Graal compiler to apply its optimizations across language boundaries (e.g., cross-

language inlining). Widening the compilation unit across different languages is important [2, 49]
as it enables the compiler to apply optimizations to a wider range of code, e.g., it allows the com-
piler to apply escape analysis and scalar replacement [51] to foreign objects. Consider a JavaScript
program that allocates an object, which is used by a C part of the application. Message resolu-
tion ensures that Graal’s escape analysis can analyze the object accesses, independent of the host
language. If the JavaScript object does not escape the compilation scope, scalar replacement can
remove the allocation and replace all usages of the object with scalar values. To demonstrate the
performance improvement caused by message resolution, we temporarily disabled it. In Figure 16,
we show the performance of our JavaScript benchmarks using C data structures with and with-
out message resolution. When disabling message resolution, every data access as well as every
function call crosses the language boundary, which results in a performance overhead of more
than 500%. We expect similar results for the other configurations, but we have not measured them
because disabling message resolution for a TLI requires a significant engineering effort.

The dynamic compiler can also minimize the effect of generic access’s language and type check
on the receiver. Using conditional elimination [50], the Graal compiler can even remove the addi-
tional type/language check by merging it with the type checks on the receiver, which is necessary
in dynamically typed languages anyway. Conditional elimination reduces the number of condi-
tional expressions by performing a control-flow analysis over the IR graph and pruning conditions
that can be proven to be true. Also, it can move checks resulting from generic access out of loops
if the compiler can prove that a condition is loop-invariant [13, 14].

5.2.2 C Extensions Support for Ruby. In this section, we compare TruffleVM to other multi-
language systems that can compose Ruby code and native C code, namely MRI, Rubinius, and

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:31

Fig. 16. Main part in JavaScript and allocations in C with and without message resolution (normalized to
pure TruffleJS performance; higher is better).

JRuby. We show that TruffleVM performs better than these related approaches. We benchmarked
examples of real-world C extensions that were developed to meet a real business need (see also
Section 4.2.4). Also, we used code that is computationally intensive rather than I/O intensive, as our
system does nothing to improve I/O performance. To the best of our knowledge, there is no widely
accepted benchmark suite for evaluating the performance of native C extensions. Therefore, we
used the existing Ruby modules chunky_png and psd.rb. Both modules have separately available
C extension modules, namely Oily_png29, which includes C extensions for resampling, PNG en-
coding and decoding, color channel manipulation, and image composition as well as Psd-native30,
which contains C extensions for color space conversion, clipping, layer masking, implementations
of Photoshop’s color blend modes, and some other utilities. These algorithms are available to Ruby
programmers as a library. We evaluated all available 43 image processing functions, each provid-
ing a different algorithm to manipulate image data. The 43 routines were set up in a benchmark
harness, which allocates Ruby data that is then processed in a C extension, i.e., the computations
of these routines are implemented in C but the data is provided by Ruby. This harness simulates
a Ruby developer applying different manipulations to image data, i.e., we measure the runtime of
the individual algorithms to process Ruby image data.

We based TruffleVM on Graal revision 9535eccd2a11. Where an unmodified Java VM was re-
quired, we used the 64-bit JDK 1.8.0u5 with default settings. Native versions of Ruby and C ex-
tensions were compiled with the system standard GCC 4.8.2. Figure 17 summarizes the peak per-
formances of all 43 C extensions benchmarks by showing their geometric mean speedup (y-axis,
higher is better). We compare all implementations (x-axis) relative to the speed at which the C
extensions run when using MRI’s implementation of the C extensions API. A detailed table with
performance numbers for all 43 C extension benchmarks can be found in Ref. [26].

29OilyPNG, Willem van Bergen and others, 2015: https://github.com/wvanbergen/oily_png.
30PSDNative, Ryan LeFevre, 2015: https://github.com/layervault/psd_native.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

https://github.com/wvanbergen/oily_png
https://github.com/layervault/psd_native

8:32 M. Grimmer et al.

Fig. 17. C extensions benchmarks (normalized to natively compiled C extensions that interface to MRI;
higher is better).

The standard implementation of Ruby is known as MRI, or CRuby. It is a bytecode interpreter
with some simple optimizations such as inline caches for method dispatch. MRI has excellent sup-
port for C extensions, as the API directly interfaces with the internal data structures of MRI. We
evaluated version 2.1.2.

Rubinius is an alternative implementation of Ruby using a VM core written in C++ and using
LLVM to implement a simple JIT compiler, but much of the Ruby-specific functionality in Rubinius
is implemented in Ruby. Rubinius uses internal data structures and implementation techniques
different from those in MRI. Most importantly, it uses C++ instead of C; so to implement the C
extensions API, Rubinius has a bridging layer, which converts C extensions API calls to C++ calls
of the Rubinius implementation. We evaluated version 2.2.10.

JRuby is an implementation of Ruby on the JVM. It uses dynamic class file generation and the
invokedynamic instruction to JIT-compile Ruby to JVM bytecode, and thus to machine code. JRuby
uses Java’s JNI [38] to implement a bridging layer that supports MRI’s C extensions API. This
technique is almost the same as in Rubinius, except that now the interface between the VM and
the bridging layer is even more complex. To share Ruby data with C extensions, JRuby must copy
the data from the managed Java heap onto the unmanaged native heap. Whenever the native
data is modified, JRuby copies the changes back to the managed Ruby object. To keep both sides
synchronized, JRuby must do this copying whenever data is passed between Ruby and C or vice
versa. JRuby had some experimental support for C extensions, but after initial development it
became unmaintained and has since been removed. We evaluated the last major version where we
found that the code still worked, which was version 1.6.0.

TruffleVM is our system. We implemented the C extensions API with generic access. As before
(see Section 5.2.1), Figure 17 also shows performance numbers for a configuration that disables
message resolution.

As the baseline of our evaluation, we used natively compiled C extensions that interface to MRI.
C extensions that interface to Rubinius are on average 60% slower than the baseline. Rubinius

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:33

needs a bridging layer to meet MRI’s API, which introduces a significant runtime overhead. Three
of the benchmarks also failed to make any progress in this configuration, so we considered them
to have timed out and did not include their runtimes in the reported mean value. C extensions that
interface to JRuby are on average 76% slower than C extensions that interface to MRI. JRuby has a
JNI-based bridging layer to meet MRI’s API, which causes a significant overhead. One benchmark
failed with an error about a missing feature; 17 benchmarks did not make progress in reasonable
time. C extensions that run on top of TruffleVM are on average 202% faster than the baseline. Truf-
fleVM performs better because MRI, Rubinius, and JRuby run the Ruby code in a dedicated VM;
only the C extensions are statically compiled and run natively. Every call or data access from native
code to the VM (and vice versa) is a compilation barrier that prevents the compiler from perform-
ing any optimizations across the language boundaries. However, in our system, the C extensions
are executed on top of TruffleC and are therefore running in the same VM as the Ruby code. We
use generic access for any foreign object access (C extensions accessing Ruby data), which removes
the language boundaries completely and allows optimizations across languages. Our system per-
forms best on C extensions that heavily access Ruby data but otherwise do little computation.
Generic access removes all language boundaries, which in the best case allows compiling the entire
benchmark into a single machine code routine. Performance is similar to native C extensions that
interface to MRI if the benchmarks are computationally intensive. In these cases, the performance
numbers are dominated by the computationally intensive parts rather than by the foreign data
access. When disabling message resolution, the C extensions run 54% slower than with message
resolution. However, their performance is still 40% faster than native C extensions that interface
to MRI.

5.3 Discussion

In this performance evaluation, we showed that if a TLI accesses foreign data using generic access,
the performance of this access mainly depends on the implementation of the data structure and
its access operations. We demonstrated that the Graal compiler removes most of the language and
type checks in generic access. The performance of a multi-language program depends on the per-
formance of the individual language parts. Using foreign data of a slow language implementation
has (as expected) a negative impact on performance (e.g., Ruby objects used in C). On the other
hand, using foreign data implemented in an efficient language has a positive effect on performance
(e.g., C data used in Ruby).

Generic access yields excellent performance of multi-language applications because of two
reasons: First, message resolution replaces language-agnostic messages with efficient foreign-
language-specific operations. Accessing foreign objects becomes as efficient as accessing objects of
the host language. Second, the dynamic compiler can perform optimizations across language bor-
ders because these borders were removed by message resolution. For example, the compiler can
inline C functions into Ruby code and vice versa, which enables optimizations across language
boundaries.

6 LESSONS LEARNED

The work described in this article allowed us to identify three key aspects for efficient and exten-
sible cross-language interoperability.

(1) Multi-language programming model: The first step is to define a programming model that
allows combining different languages. In this work, we used two different approaches:
First, we introduced a novel multi-language programming model that combines languages
via a multi-language scope that programmers can use to exchange data and functions

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

8:34 M. Grimmer et al.

Table 1. Code Metrics of TruffleVM

Project Size
(Lines of Code)

Modification Size
(Lines of Code)

Modification Description

Dynamic Compiler: Graal 240k No changes necessary

Truffle Framework 84k 3k
Message resolution API

Multi-language scope

TruffleJS 127k 5.4k Message resolution implementation

TruffleRuby 129k 3.7k
Message resolution implementation

C Extension API implementation

TruffleC 34k 3.4k Message resolution implementation

across languages. Multi-language applications can access foreign objects and can call for-
eign functions by simply using the operators of the host language. Second, we imple-
mented an existing FFI and used generic access to implement the interface.

(2) Language-agnostic foreign object access: We conclude that a language-agnostic set of prim-
itive cross-language operations (we call them messages as part of generic access) makes
our approach flexible enough to support different interoperability use-cases. We believe
that a language-agnostic set of operations is important as it allows adding new languages
without requiring modifications in the existing language implementations. If the set of
operations were specific to a combination of languages, any new language would require
modification of existing language implementations as part of TruffleVM (the engineering
effort would be quadratic with the number of languages).

Also, pushing the abstraction of object accesses down to primitive operations (e.g., read
and write messages) features enough flexibility to meet the needs of a variety of languages
(e.g., raw memory accesses in C and an object accesses in JS) and use-cases (e.g., writing
multi language applications in three different languages as shown in Section 4.1 or using
an FFI as shown in Section 4.2).

(3) Optimization across language boundaries: The key insight in terms of performance is that a
uniform approach of language implementations on the same VM is an essential factor. We
used Truffle ASTs as a common intermediate representation of our languages. Message
resolution as part of generic access allows us to compose ASTs of different languages and
therefore to remove the boundaries between languages. These unified ASTs allow us to
use an unmodified dynamic compiler for optimization across language boundaries, which
ensures efficient cross-language interoperability.

To round out our experience and lessons learned, we describe the implementation effort of all
components as part of TruffleVM, the limitations, as well as future work and research enabled by
this work.

6.1 Implementation Effort

We based our work on Truffle and Graal and extended the Truffle framework by generic access.
Table 1 shows the sizes of the various TruffleVM parts as well as the necessary modification efforts.
TruffleJS is an Oracle Labs project, which was started in 2012 as a student project at Johannes
Kepler University. As of March 2017, TruffleJS is being developed by a team of seven people. In total,
we estimate the implementation effort of TruffleJS with 19 person-years. TruffleRuby is also an
Oracle Labs project, which was started in 2014, and by the time this article is written, TruffleRuby
will be in development by a team of six people. In total, we estimate the implementation effort of

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:35

TruffleRuby with 10 person-years. TruffleC is a research project developed at the Johannes Kepler
University. It was implemented by two PhD students within two years.

For the work presented in this article, we extended the Truffle framework by an API for generic

access. This API defines all messages and the necessary features for message resolution. Also, our
extensions include the multi-language scope. In total, our extensions added 3k LOC to the Truffle
framework. We were able to reuse the Graal compiler without any modifications because generic

access produces unified ASTs of different languages, which can be directly compiled by Graal.
For the case studies of this article, we extended existing TLIs with generic access, namely

TruffleJS, TruffleRuby, and TruffleC. These extensions add 5.4k LOC to TruffleJS, 3.7k LOC to Truf-
fleRuby, and 3.4k LOC to TruffleC. Extending an existing TLI by adding support for generic access

requires the following engineering effort:

—Generic access - transforming foreign object accesses to language-agnostic messages: If a TLI
wants to act as a host language and to access objects of a foreign language, it needs to map

these accesses to messages, i.e., a TLI (LNew) has to define TN New

fNew−−−→ TN New∪N Msд . Option-
ally, a TLI can provide an API that allows programmers to explicitly use generic access.

—Generic access - transforming language-agnostic messages to regular object accesses: If a TLI
(LNew) wants to be used as a foreign language and to share objects with other languages,
shared objects need to support generic access. The TLI needs to define a mapping from

language-agnostic messages to access operations that are specific to LNew: TN A∪N Msд

дNew−−−→
TN A∪N New .

—Multi-language scope: The TLI has to provide infrastructure for the application programmer
to export and import objects to and from the multi-language scope.

Extending Truffle by the API for generic access and extending three existing languages by an im-
plementation of generic access could be accomplished by one Truffle expert within one year.

If one wants to add a new language to TruffleVM, it is first necessary to implement the guest
language as a Truffle language implementation. The layered approach of Truffle simplifies guest
language implementations. With Truffle, common parts found in every high-performance VM are
factored out, which allows developers to focus on required execution semantics when implement-
ing a TLI. Only guest-language-specific parts have to be implemented from scratch. A core of
reusable host services is provided by the framework, such as dynamic compilation, automatic
memory management, threads, synchronization primitives, and a well-defined memory model.

6.2 Limitations and Future Work

We identified the following limitations and future research opportunities in cross-language
interoperability:

—Limited support for precompiled libraries: Our approach is based on a shared intermediate
representation of source code. We compile code snippets to Truffle ASTs and combine these
ASTs using generic access. This technique imposes the requirement that the source code of
an application is available. All source code that needs to operate on foreign objects needs
to be executed on top of a TLI.

Nevertheless, individual languages can still link to precompiled code. For example, Truf-
fleC can link to the standard library and access its function via GNFI (c.f. Section 2). How-
ever, foreign objects cannot be passed to this library code; e.g., it is not possible to pass a
JavaScript object to the native printf function of the C standard library. In these cases, we
report a runtime error.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

8:36 M. Grimmer et al.

—Managed and unmanaged data: As described in Section 4.1.2, when combining managed and
unmanaged languages, operations are restricted. For example, unmanaged data structures
cannot store references to managed objects.

However, we are working on a memory-safe version of our C implementation [24], which
uses managed Java objects to represent native allocations. Using managed allocations to
represent C data would allow us to overcome these limitations. Our work on a memory-
safe C implementation and its combination with other languages is ongoing research and
we are not yet able to provide results or an evaluation.

—Multi-language concurrency, parallelization, and threads: Truffle allows implementing dif-
ferent models for concurrency on top of TruffleVM. However, we consider multi-threaded
applications that mix different languages and concurrency models a separate research topic
and out of scope of this work. The work of this article is limited to single-threaded applica-
tions. The concurrency models in JavaScript, Ruby, and C differ significantly, i.e., applica-
tions written in multiple languages need to unify these models and bridge the differences
across languages. Our ongoing research investigates concurrency and parallelization across
language borders.

The work presented in this article is the basis of our ongoing research: Daloze et al. [12]
investigates a tread-safe and language-agnostic object model. Also, there is ongoing work
that explores an implicit parallel-data programming model combining JavaScript data struc-
tures with C functions.

—Multi-language inheritance: Currently, there is no support for cross-language inheritance,
i.e., class-based inheritance or prototype-based inheritance is only possible with classes or
objects that originate from the same language. However, we are convinced that TruffleVM
is extensible in this respect. Therefore, future research could investigate inheritance across
language boundaries.

—Cross-language debuggers: The Truffle framework allows the implementation of debuggers
with zero-overhead [47]. Future research will focus on generalizing the existing debuggers
for TLIs so that they can be used for multi-language applications; similar to the work of
Lee et al. [37]. The goal of this work is a zero-overhead debugger for multi-language applica-
tions that allows developers to step into functions or inspect data, which were implemented
or allocated in different languages.

—Additional languages: TruffleVM allows adding new TLIs easily. A TLI has to support generic

access and needs access to the multi-language scope. Having these extensions, the TLI can
be added to TruffleVM. As future work, we want to add further languages to the runtime.
There is a TLI for the functional language Clojure, for the dynamic language Python31 [57,
63], as well as for Java [21]. As we did for JavaScript, Ruby, and C (see Section 4.1.2), this
work requires bridging different language paradigms and features. We did not include these
languages into the case study of this article because at the time of writing this article, Clojure
and Java were in an early state and under heavy development. Python was developed by
external collaborators. Hence, adding these TLIs to TruffleVM would have required a major
engineering effort and was therefore intentionally left for future work.

There is ongoing work that integrates the mathematical language R32 into TruffleVM.
However, this is early work and we are not yet able to provide results or an evaluation.

31Zippy—a Python implementation on top of Truffle, Bitbucket repository, 2015: https://bitbucket.org/ssllab/zippy.
32FastR—an R implementation on top of Truffle, Oracle, 2017: https://github.com/oracle/fastr.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

https://bitbucket.org/ssllab/zippy
https://github.com/oracle/fastr

Cross-Language Interoperability in a Multi-Language Runtime 8:37

—C extensions support for other languages: Besides Ruby, other dynamic languages also have
a C extensions API, e.g., Python33 or R.34 Similar to our implementation for TruffleRuby,
an implementation of the C extensions API could simply substitute invocations of these
extension functions with a generic access. Also, TruffleJS already supports Node.js including
native modules. However, these native modules are currently integrated using a JNI based
implementation. As part of future work we want to run JS modules as well as native modules
on TruffleVM and integrate them using generic access as proposed in this article.

7 RELATED WORK

To put TruffleVM in context, we compare it to related approaches for cross-language interoper-
ability, including foreign function interfaces, inter-process communication, and multi-language
runtimes.

7.1 Foreign Function Interfaces

Most modern VMs expose an FFI such as Java’s JNI [39], Java’s Native Access,35 or Java’s Compiled
Native Interface.36 An FFI defines a specific API between two languages. Programmers can access
foreign objects of the target language by using this API. However, the result is rather inflexible:
in order to interact with a foreign language, the programmer has to write glue code and this code
only works for a specific pair of languages. Also, FFIs primarily allow integrating C/C++ code into
languages such as Ruby (Ruby’s C extensions mechanism), R (native R extensions), or Java [39].
They hardly allow integrating code written in a different language than C.

Wrapper generation tools (e.g., Refs. [6] and [45]) use annotations to generate FFI code from
C/C++ interfaces, rather than requiring users to write FFI glue code by hand. A similar approach
is described in Ref. [36], where existing interfaces are transcribed into a new notation instead of
using annotations.

Compilation barriers at language boundaries have a negative impact on performance. To widen
the compilation span across multiple languages, Stepanian et al. [52] describe an approach that
allows inlining native functions into a Java application using a JIT compiler. They can show how
inlining substantially reduces the overhead of JNI calls.

Kell et al. [35] describe invisible VMs, which allow a simple and low-overhead foreign func-
tion interfacing. They implement the Python language and minimize the FFI overhead to natively
compiled code.

Jeannie [29] allows toggling between C and Java; hence, the two languages can be combined
without writing boilerplate code. In Jeannie, programmers can mix both Java and C code in the
same file and Jeannie compiles this to code parts communicating via JNI.

There are many other approaches that target a fixed pair of languages [8, 19, 33, 46, 59]. These
approaches are all tailored toward interoperability between two specific languages and cannot
be generalized for arbitrary languages and VMs. In contrast to them, our solution provides true
cross-language interoperability between any Truffle-based languages rather than just pairwise
interoperability. We can compose languages and reduce boilerplate code to a minimum. We do not
target a fixed set of languages, and generic access does not introduce a compilation barrier when
crossing language boundaries.

33Python Language, Python Software Foundation, 2015: https://www.python.org/.
34The R Project for Statistical Computing, The R Foundation, 2015: http://www.r-project.org/.
35Java Native Access (JNA), GitHub repository, 2015: https://github.com/twall/jna.
36Compiled Native Interface (CNI), GCC the GNU Compiler Collection, 2015: http://gcc.gnu.org/onlinedocs/gcj/About-CNI.

html.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

https://www.python.org/
http://www.r-project.org/
https://github.com/twall/jna
http://gcc.gnu.org/onlinedocs/gcj/About-CNI.html

8:38 M. Grimmer et al.

7.2 Inter-Process Communication

IDLs implement cross-language interoperability via message-based inter-process communication
between separate runtimes. This approach is mainly targeted to remote procedure calls and often
not only aims at bridging different languages but also at calling code on remote computers. Pro-
grammers can define an interface in an IDL that can then be mapped to multiple languages. An
IDL interface is translated to stubs in the host language and in the foreign language, which can
then be used for cross-language communication [43, 44, 48, 55]. These per-language stubs marshal
data to and from a common wire representation. However, this approach introduces a marshalling
and copying overhead as well as an additional maintenance burden (learning and using an IDL,
together with its toolchain).

Lightweight remote procedure calls [7] optimize the communication between protected domains
on the same machine (including control transfer, data transfer, and linkage), which reduces the
costs incurred by using remote procedure calls. Otherwise, using IDLs in the context of single-
process applications has only been explored in limited ways [16, 56].

Generic access is also based on messages, but they are resolved at runtime and are replaced with
direct access operations to foreign objects. These messages are transparent to the programmer
and are automatically generated. TruffleVM makes the mapping of foreign language operations to
messages the task of the language implementer rather than the task of the application programmer.
Our approach accesses foreign objects directly instead of copying them at language borders. In fact,
language borders are completely eliminated so that the dynamic compiler can optimize across
languages and can thus improve the performance of multi-language applications significantly.

7.3 Multi-Language Runtimes

TruffleVM composes language implementations that are running on a shared VM, which is closely
related to Microsoft’s Common Language Runtime [10, 15, 42] as well as to the RPython [9] run-
time. In the following, we compare these runtimes to TruffleVM.

Microsoft’s CLI. The Microsoft Common Language Infrastructure (CLI) [15] describes language
implementations that compile different languages to a common IR that is executed by the CLR [10].
The CLR provides a common type system, automatic memory management, a JIT compiler (a func-
tion is compiled just before execution), a security manager, and a class loader. The CLR can execute
conventional object-oriented imperative languages, dynamically typed languages, and functional
languages (e.g., F#).

The Dynamic Language Runtime (DLR) [28] is a framework for implementing dynamic lan-
guages on top of the CLR, which is similar to Truffle as a framework on top of the JVM. Language
developers parse source code to an expression tree, which is the DLR’s representation of source
code. The DLR defines a fixed set of language-agnostic expressions that language implementers
use to build up an expression tree. DLR expression trees can be interpreted by the DLR’s interpreter
or converted to the CLR’s IR, which is directly compiled to machine code. A DLR language imple-
mentation transforms operations of dynamically typed operands to call sites [28]. For example, an
implementation does not emit IR code that adds two numbers for a JavaScript + operation, but it
emits a call site. A call site is a placeholder for an operation that is resolved at runtime. The DLR
uses a delegate to implement a call site. A delegate then calls the different implementations of an
operation. In the case of a JavaScript + operation, the delegate can call the double instance of a +
operation (implemented as a type check followed by a double addition). This approach is different
to Truffle because Truffle ASTs are self-optimizing and speculatively rewrite themselves with spe-

cialized variants at runtime, e.g., based on profile information. This technique allows specializing

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:39

on a subset of the semantics of a particular operation. Truffle compiles frequently executed ASTs
to machine code and deoptimizes them if a tree needs to be re-specialized.

A language implementation on top of the DLR needs to use the object model of the CLR to im-
plement the objects of a guest language, i.e., it has to represent them using CLR’s builtin types [28].
DLR languages can make dynamic calls on objects defined in other languages. Similar to generic

access, the DLR is inspired by Smalltalk. It defines a meta-object protocol that provides a set of
language-agnostic operations on objects. These operations are again implemented with call sites
and delegates.

Microsoft’s approach is different from ours because of the following reasons:

—Object representation: Language implementations on top of the CLR (including the DLR
languages) need to use the statically typed and managed object model of the CLR. Tight
interoperability on the IR level is only possible between languages whose type system cor-
responds to the CTS. The object access is implemented using the CLR’s IR.

Generic access, on the other hand, allows every language to have its own representation of
objects and to define individual access operations. TLIs are not bound to a common object
representation, e.g., TruffleJS allocates managed objects whereas TruffleC allocates data as
plain byte sequences on the unmanaged native heap. Generic access resolves and embeds
language-specific AST snippets for each access at runtime (e.g., access operations to the
managed Java heap or a raw memory access to the native heap).

—Languages: The CLR accesses unmanaged code (e.g., C code) via the annotation-based PIn-
voke and the FFI-like IJW interfaces, which use explicit marshalling and a pinning API.
TruffleVM treats unmanaged languages (e.g., C) as first-class citizens and provides a TLI
for them. TruffleC supports generic access and can access managed and dynamically typed
objects. Also, other high-level languages (e.g., JavaScript) can access unmanaged C data
efficiently.

—Object access: The DLR uses cached delegates to access foreign objects, which causes a call
site for every foreign object access. Jeff Hardy states in Ref. [28] that a foreign object access
is as fast as other dynamic calls, and almost as fast as static calls. Generic access avoids this
indirection, i.e., there are no call sites between languages because generic access directly
embeds the foreign object access into the AST of the host application. We specialize a foreign
object access on the language and the type of the foreign object and embed it into the host
language’s AST thus eliminating any boundaries between languages. If a variable—in the
course of further execution—is changed to reference a foreign object that has a different
type or comes from a different language, the execution falls back to the AST interpreter and
generic access resolves a new foreign object access.

RPython. Cross-language interoperability on top of RPython [3–5] allows the programmer to
toggle between syntax and semantics of languages on the statement level. Barrett et al. describe
a combination of Python and Prolog called Unipycation [3] or a combination of Python and PHP
called PyHyp [5]. Unipycation and PyHyp compose languages by combining their interpreters.
Both approaches glue the interpreters together on the language implementation level. The new
interpreter is then compiled using a meta-tracing JIT. To share data across languages, Unipyca-
tion and PyHyp wrap objects using adapters. Like TruffleVM, the approach of Barrett et al. avoids
compilation boundaries between languages and multi-language applications show good perfor-
mance. In contrast to Barret et al.’s approach, however, TruffleVM is not restricted to a fixed set
of languages. Unipycation and PyHyp both compose a specific pair of language implementations
whereas generic access is a general mechanism for composing arbitrary Truffle language implemen-
tations. Unipycation, and PyHyp propose a more fine-grained language composition compared to

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

8:40 M. Grimmer et al.

our approach. However, when languages are mixed at source code level, editors, compilers, and
debuggers have to be adapted as well.

7.4 Multi-Language Semantics

The semantics of language composition is a well-researched area [1, 19, 20, 41, 54, 59]. However,
most of these approaches do not have an efficient implementation. Our work partially bases on
ideas from existing approaches (i.e., like types from Wrigstad et al. [59], Section 4.1.2) and, there-
fore, stands to complement such efforts.

8 CONCLUSIONS

In this article, we presented TruffleVM, a runtime with a set of language implementations that
can efficiently execute multi-language applications. The language implementations of TruffleVM
translate source code into a self-optimizing AST, which is interpreted and finally dynamically
compiled to efficient machine code. TruffleVM can host managed high-level languages (JavaScript
and Ruby) as well as unmanaged low-level languages (C).

A uniform approach of language implementation on the same VM is an essential factor for ef-
ficient cross-language interoperability. We compose different language implementations on the
AST level via a language-agnostic mechanism, which we call generic access. Language implemen-
tations use language-independent messages to access foreign objects that are resolved at their first
execution and transformed to efficient foreign-language-specific operations. Generic access is inde-
pendent of languages, which allows adding new languages to TruffleVM without affecting existing
languages. This approach leads to excellent performance of multi-language applications because of
two reasons. First, message resolution replaces language-agnostic messages with efficient foreign-
language-specific operations. Accessing foreign objects becomes as efficient as accessing objects of
the host language. Second, the dynamic compiler can perform optimizations across language bor-
ders because these borders were removed by message resolution. We show that using heavyweight
foreign data has a negative impact on performance, whereas using lightweight foreign data has a
positive effect on performance. Our evaluation shows that the dynamic compiler of TruffleVM can
eliminate many of the language and type checks that come with generic access.

We presented two case studies that evaluate generic access. First, we discussed seamless cross-
language interoperability between JavaScript, Ruby, and C. TruffleVM allows programmers to di-
rectly access foreign objects using the operators of the host language. Generic access makes the
mapping of access operations to messages largely the task of the language implementer rather
than the task of the end programmer. Second, we used generic access to implement the C exten-
sions API for TruffleRuby. TruffleC substitutes invocations of C extensions API functions and uses
generic access for accessing Ruby objects instead. Our system is therefore compatible with MRI’s
C extensions API and can execute real-world applications. TruffleVM can be the basis for a wide
variety of different areas of future research. Topics are, for example, multi-language concurrency
and parallelism, cross-language inheritance, or cross-language debuggers.

ACKNOWLEDGMENTS

We thank all members of the Virtual Machine Research Group at Oracle Labs and the Institute of
System Software at the Johannes Kepler University Linz for their valuable feedback on this work
and on this article. We thank Daniele Bonetta, Stefan Marr, and Christian Wirth for feedback on
this article. We especially thank Stephen Kell for significant contributions to our literature survey.

Oracle, Java, and HotSpot are trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

Cross-Language Interoperability in a Multi-Language Runtime 8:41

REFERENCES

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. 1989. Dynamic typing in a statically-typed language. In Proceedings

of the 16th Symposium on Principles of Programming Languages (POPL’89). ACM, New York, NY, 213–227. DOI:http:

//dx.doi.org/10.1145/75277.75296

[2] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. 2005. A survey of adaptive optimization in virtual ma-

chines. Proc. IEEE 93, 2 (2005), 449–466. DOI:http://dx.doi.org/10.1109/JPROC.2004.840305

[3] Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. 2013. Unipycation: A case study in cross-language tracing. In

Proceedings of the 7th ACM Workshop on Virtual Machines and Intermediate Languages (VMIL’13). ACM, New York,

NY, 31–40. DOI:http://dx.doi.org/10.1145/2542142.2542146

[4] Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. 2014. Approaches to interpreter composition. CoRR

abs/1409.0757. Retrieved from http://arxiv.org/abs/1409.0757.

[5] Edd Barrett, Lukas Diekmann, and Laurence Tratt. 2015. Fine-grained language composition. CoRR abs/1503.08623.

Retrieved from http://arxiv.org/abs/1503.08623.

[6] David M. Beazley and others. 1996. SWIG: An easy to use tool for integrating scripting languages with C and C++.

In Proceedings of the 4th USENIX Tcl/Tk Workshop. 129–139.

[7] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy. 1990. Lightweight remote proce-

dure call. ACM Trans. Comput. Syst. 8, 1 (Feb. 1990), 37–55. DOI:http://dx.doi.org/10.1145/77648.77650

[8] Matthias Blume. 2001. No-longer-foreign: Teaching an ML compiler to speak C natively. Electronic Notes in Theoretical

Computer Science 59, 1 (2001), 36–52.

[9] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009. Tracing the meta-level: PyPy’s tracing

JIT compiler. In Proceedings of the 4th Workshop on the Implementation, Compilation, Optimization of Object-Oriented

Languages and Programming Systems (ICOOOLPS’09). ACM, New York, NY, 18–25. DOI:http://dx.doi.org/10.1145/

1565824.1565827

[10] D. Box and C. Sells. 2002. Essential .NET. The Common Language Runtime, vol. I. (2002).

[11] David Chisnall. 2013. The challenge of cross-language interoperability. Commun. ACM 56, 12 (2013), 50–56. DOI:http:

//dx.doi.org/10.1145/2534706.2534719

[12] Benoit Daloze, Stefan Marr, Daniele Bonetta, and Hanspeter Mössenböck. 2016. Efficient and thread-safe objects for

dynamically-typed languages. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA 2016). ACM, New York, NY, 642–659. DOI:http://dx.doi.

org/10.1145/2983990.2984001

[13] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Speculation without regret: Reducing de-

optimization meta-data in the graal compiler. In Proceedings of the 2014 International Conference on Principles and

Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ’14). ACM, New York,

NY, 187–193. DOI:http://dx.doi.org/10.1145/2647508.2647521

[14] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter Mössenböck.

2013. An intermediate representation for speculative optimizations in a dynamic compiler. In Proceedings of the 7th

ACM Workshop on Virtual Machines and Intermediate Languages (VMIL’13). ACM, New York, NY, 1–10. DOI:http:

//dx.doi.org/10.1145/2542142.2542143

[15] ECMA-International. 2012. Standard ECMA-335. Common Language Infrastructure (CLI). Retrieved from http://

www.ecma-international.org/publications/standards/Ecma-335.htm.

[16] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. 1999. Calling hell from heaven and heaven from

hell. In Proceedings of the Fourth ACM SIGPLAN International Conference on Functional Programming (ICFP’99). ACM,

New York, NY, 114–125. DOI:http://dx.doi.org/10.1145/317636.317790

[17] Philip J. Fleming and John J. Wallace. 1986. How not to lie with statistics: The correct way to summarize benchmark

results. Commun. ACM 29, 3 (March 1986), 218–221. DOI:http://dx.doi.org/10.1145/5666.5673

[18] Yoshihiko Futamura. 1999. Partial evaluation of computation process—An approach to a compiler-compiler. Higher-

Order and Symbolic Computation 12, 4 (1999), 381–391.

[19] Kathryn Gray, Robert Bruce Findler, and Matthew Flatt. 2005. Fine-grained interoperability through mirrors and con-

tracts. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA’05). ACM, New York, NY, 231–245. DOI:http://dx.doi.org/10.1145/1094811.1094830

[20] Kathryn E. Gray. 2008. Safe cross-language inheritance. In Proceedings of the European Conference on Object-Oriented

Programming (ECOOP’08). Lecture Notes in Computer Science, Vol. 5142. Springer Berlin, 52–75. DOI:http://dx.doi.

org/10.1007/978-3-540-70592-5_4

[21] Matthias Grimmer, Stefan Marr, Mario Kahlhofer, Christian Wimmer, Thomas Würthinger, and Hanspeter Mössen-

böck. 2017. Applying optimizations for dynamically-typed languages to java. In Proceedings of the 14th Interna-

tional Conference on Managed Languages and Runtimes (ManLang 2017). ACM, New York, NY, 12–22. DOI:http:

//dx.doi.org/10.1145/3132190.3132202

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

http://dx.doi.org/10.1145/75277.75296
http://dx.doi.org/10.1109/JPROC.2004.840305
http://dx.doi.org/10.1145/2542142.2542146
http://arxiv.org/abs/1409.0757.
http://arxiv.org/abs/1503.08623.
http://dx.doi.org/10.1145/77648.77650
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1145/2534706.2534719
http://dx.doi.org/10.1145/2983990.2984001
http://dx.doi.org/10.1145/2647508.2647521
http://dx.doi.org/10.1145/2542142.2542143
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://dx.doi.org/10.1145/317636.317790
http://dx.doi.org/10.1145/5666.5673
http://dx.doi.org/10.1145/1094811.1094830
http://dx.doi.org/10.1007/978-3-540-70592-5_4
http://dx.doi.org/10.1145/3132190.3132202

8:42 M. Grimmer et al.

[22] Matthias Grimmer, Manuel Rigger, Roland Schatz, Lukas Stadler, and Hanspeter Mössenböck. 2014. TruffleC: Dy-

namic execution of C on a java virtual machine. In Proceedings of the 2014 International Conference on Principles and

Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ’14). ACM, New York,

NY. DOI:http://dx.doi.org/10.1145/2647508.2647528

[23] Matthias Grimmer, Manuel Rigger, Lukas Stadler, Roland Schatz, and Hanspeter Mössenböck. 2013. An efficient

native function interface for java. In Proceedings of the 2013 International Conference on Principles and Practices of

Programming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ’13). ACM, New York, NY, 35–44.

DOI:http://dx.doi.org/10.1145/2500828.2500832

[24] Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Würthinger, and Hanspeter Mössenböck. 2015. Memory-

safe execution of C on a java VM. In Proceedings of the 10th Workshop on Programming Languages and Analysis for

Security (PLAS’15). ACM, New York, NY. DOI:http://dx.doi.org/10.1145/2786558.2786565

[25] Matthias Grimmer, Chris Seaton, Roland Schatz, Würthinger, and Hanspeter Mössenböck. 2015. High-performance

cross-language interoperability in a multi-language runtime. In Proceedings of the 11th Symposium on Dynamic Lan-

guages (DLS’15). ACM, New York, NY.

[26] Matthias Grimmer, Chris Seaton, Thomas Würthinger, and Hanspeter Mössenböck. 2015. Dynamically composing

languages in a modular way: Supporting C extensions for dynamic languages. In Proceedings of the 14th International

Conference on Modularity (MODULARITY 2015). ACM, New York, NY, 1–13. DOI:http://dx.doi.org/10.1145/2724525.

2728790

[27] Matthias Grimmer, Thomas Würthinger, Andreas Wöß, and Hanspeter Mössenböck. 2014. An efficient approach for

accessing C data structures from javascript. In Proceedings of 9th International Workshop on Implementation, Compi-

lation, Optimization of Object-Oriented Languages, Programs and Systems PLE - Workshop on Programming Language

Evolution, 2014 (ICOOOLPS’14). ACM, New York, NY. DOI:http://dx.doi.org/10.1145/2633301.2633302

[28] Jeff Hardy. 2008. The dynamic language runtime and the iron languages. In The Architecture of Open Source Applica-

tions, Volume II, Amy Brown and Greg Wilson (Eds.). Retrieved from http://aosabook.org/en/index.html.

[29] Martin Hirzel and Robert Grimm. 2007. Jeannie: Granting java native interface developers their wishes. In Proceedings

of the 22nd Annual ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications (OOPSLA’07).

ACM, New York, NY, 19–38. DOI:http://dx.doi.org/10.1145/1297027.1297030

[30] Urs Hölzle, Craig Chambers, and David Ungar. 1991. Optimizing dynamically-typed object-oriented languages with

polymorphic inline caches. In ECOOP’91 European Conference on Object-Oriented Programming, Pierre America (Ed.).

Lecture Notes in Computer Science, Vol. 512. Springer Berlin, 21–38. DOI:http://dx.doi.org/10.1007/BFb0057013

[31] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging optimized code with dynamic deoptimization. In

Proceedings of the ACM SIGPLAN 1992 Conference on Programming Language Design and Implementation (PLDI’92).

ACM, New York, NY, 32–43. DOI:http://dx.doi.org/10.1145/143095.143114

[32] International Organization for Standardization. 2007. C99 Standard: ISO/IEX 9899:TC3. Retrieved from www.

open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf.

[33] Simon Peyton Jones, Thomas Nordin, and Alastair Reid. 1997. GreenCard: A foreign-language interface for Haskell.

In Proc. Haskell Workshop.

[34] Tomas Kalibera and Richard Jones. 2013. Rigorous benchmarking in reasonable time. In Proceedings of the 2013 ACM

SIGPLAN International Symposium on Memory Management (ISMM).

[35] Stephen Kell and Conrad Irwin. 2011. Virtual machines should be invisible. In Proceedings of the Compilation of the

Co-located Workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11 (SPLASH’11 Workshops).

ACM, New York, NY, 289–296. DOI:http://dx.doi.org/10.1145/2095050.2095099

[36] F. Klock II. 2007. The layers of Larceny’s foreign function interface. In Scheme and Functional Programming Workshop.

Citeseer.

[37] Byeongcheol Lee, Martin Hirzel, Robert Grimm, and Kathryn S. McKinley. 2009. Debug all your code: Portable mixed-

environment debugging. SIGPLAN Not. 44, 10 (Oct. 2009), 207–226. DOI:http://dx.doi.org/10.1145/1639949.1640105

[38] Sheng Liang. 1999. Java Native Interface: Programmer’s Guide and Reference (1st ed.). Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA.

[39] Sheng Liang. 1999. The Java Native Interface: Programmer’s Guide and Specification. Addison-Wesley Professional.

[40] Marr and Ducasse. 2015. Tracing vs. partial evaluation: Comparing meta-compilation approaches for self-optimizing

interpreters. In Proceedings of the 2015 ACM International Conference on Object Oriented Programming Systems Lan-

guages; Applications (OOPSLA’15). ACM, New York, NY.

[41] Jacob Matthews and Robert Bruce Findler. 2007. Operational semantics for multi-language programs. In Proceedings

of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’07). ACM, New

York, NY, 3–10. DOI:http://dx.doi.org/10.1145/1190216.1190220

[42] Erik Meijer and John Gough. 2001. Technical overview of the common language runtime. Language 29 (2001), 7.

[43] Mozilla Developer Network. 2014. XPCOM Specification. Retrieved from https://developer.mozilla.org/en-US/docs/

Mozilla/XPCOM.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

http://dx.doi.org/10.1145/2647508.2647528
http://dx.doi.org/10.1145/2500828.2500832
http://dx.doi.org/10.1145/2786558.2786565
http://dx.doi.org/10.1145/2724525.2728790
http://dx.doi.org/10.1145/2633301.2633302
http://aosabook.org/en/index.html
http://dx.doi.org/10.1145/1297027.1297030
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1145/143095.143114
www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://dx.doi.org/10.1145/2095050.2095099
http://dx.doi.org/10.1145/1639949.1640105
http://dx.doi.org/10.1145/1190216.1190220
https://developer.mozilla.org/en-US/docs/Mozilla/XPCOM

Cross-Language Interoperability in a Multi-Language Runtime 8:43

[44] Object Management Group. 2014. Common Object Request Brooker Architecture (CORBA) Specification. Retrievced

from http://www.omg.org/spec/CORBA/3.3/.

[45] John Reppy and Chunyan Song. 2006. Application-specific foreign-interface generation. In Proceedings of the 5th

International Conference on Generative Programming and Component Engineering (GPCE’06). ACM, New York, NY,

49–58. DOI:http://dx.doi.org/10.1145/1173706.1173714

[46] John R. Rose and Hans Muller. 1992. Integrating the scheme and C languages. In Proceedings of the 1992 ACM Con-

ference on LISP and Functional Programming (LFP’92). ACM, New York, NY, 247–259. DOI:http://dx.doi.org/10.1145/

141471.141559

[47] Chris Seaton, Michael L. Van De Vanter, and Michael Haupt. 2014. Debugging at full speed. In Proceedings of the

Workshop on Dynamic Languages and Applications. ACM, 1–13.

[48] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. 2007. Thrift: Scalable cross-language services implementation.

Facebook White Paper 5 (2007).

[49] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, and Thomas Würthinger. 2012. Compilation queuing and

graph caching for dynamic compilers. In Proceedings of the 6th ACM Workshop on Virtual Machines and Intermediate

Languages (VMIL’12). ACM, New York, NY, 49–58. DOI:http://dx.doi.org/10.1145/2414740.2414750

[50] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, Thomas Würthinger, and Doug Simon. 2013. An experimental

study of the influence of dynamic compiler optimizations on scala performance. In Proceedings of the 4th Workshop

on Scala (SCALA’13). ACM, New York, NY, Article 9, 8 pages. DOI:http://dx.doi.org/10.1145/2489837.2489846

[51] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Partial escape analysis and scalar replacement

for java. In Proceedings of Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO’14).

ACM, New York, NY, Article 165, 10 pages. DOI:http://dx.doi.org/10.1145/2544137.2544157

[52] Levon Stepanian, Angela Demke Brown, Allan Kielstra, Gita Koblents, and Kevin Stoodley. 2005. Inlining java native

calls at runtime. In Proceedings of the 1st ACM/USENIX International Conference on Virtual Execution Environments

(VEE’05). ACM, New York, NY, 121–131. DOI:http://dx.doi.org/10.1145/1064979.1064997

[53] TC39. 2016. Official ECMAScript Conformance Test Suite. Retrieved from https://github.com/tc39/test262.

[54] Valery Trifonov and Zhong Shao. 1999. Safe and Principled Language Interoperation. Springer.

[55] Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan. 2001. Overview of the CORBA component model. In

Component-Based Software Engineering. Addison-Wesley Longman, 557–571.

[56] Michal Wegiel and Chandra Krintz. 2010. Cross-language, type-safe, and transparent object sharing for co-located

managed runtimes. In Proceedings of the ACM International Conference on Object Oriented Programming Systems Lan-

guages and Applications (OOPSLA’10). ACM, New York, NY, 223–240. DOI:http://dx.doi.org/10.1145/1869459.1869479

[57] Christian Wimmer and Stefan Brunthaler. 2013. ZipPy on truffle: A fast and simple implementation of python. In

Proceedings of the 2013 Companion Publication for Conference on Systems, Programming, Applications: Software for

Humanity (SPLASH’13). ACM, New York, NY, 17–18. DOI:http://dx.doi.org/10.1145/2508075.2514572

[58] Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Christian Humer, and Hanspeter Mössenböck. 2014.

An object storage model for the truffle language implementation framework. In Proceedings of the 2014 International

Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools

(PPPJ’14). ACM, New York, NY, 133–144. DOI:http://dx.doi.org/10.1145/2647508.2647517

[59] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan Vitek. 2010. Integrating typed

and untyped code in a scripting language. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL’10). ACM, New York, NY, 377–388. DOI:http://dx.doi.org/10.1145/

1706299.1706343

[60] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas Stadler, Chris Seaton, Gilles

Duboscq, Doug Simon, and Matthias Grimmer. 2017. Practical partial evaluation for high-performance dynamic lan-

guage runtimes. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI 2017). ACM, New York, NY, 662–676. DOI:http://dx.doi.org/10.1145/3062341.3062381

[61] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Christian Humer, Gregor

Richards, Doug Simon, and Mario Wolczko. 2013. One VM to rule them all. In Proceedings of the 2013 ACM International

Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software (Onward! 2013). ACM, New York,

NY, 187–204. DOI:http://dx.doi.org/10.1145/2509578.2509581

[62] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and Christian Wimmer. 2012. Self-

optimizing AST interpreters. In Proceedings of the 8th Symposium on Dynamic Languages (DLS’12). ACM, New York,

NY, 73–82. DOI:http://dx.doi.org/10.1145/2384577.2384587

[63] Wei Zhang, Per Larsen, Stefan Brunthaler, and Michael Franz. 2014. Accelerating iterators in optimizing AST inter-

preters. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages;

Applications (OOPSLA’14). ACM, New York, NY, 727–743. DOI:http://dx.doi.org/10.1145/2660193.2660223

Received March 2016; revised October 2017; accepted February 2018

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 8. Publication date: May 2018.

http://www.omg.org/spec/CORBA/3.3/
http://dx.doi.org/10.1145/1173706.1173714
http://dx.doi.org/10.1145/141471.141559
http://dx.doi.org/10.1145/2414740.2414750
http://dx.doi.org/10.1145/2489837.2489846
http://dx.doi.org/10.1145/2544137.2544157
http://dx.doi.org/10.1145/1064979.1064997
https://github.com/tc39/test262.
http://dx.doi.org/10.1145/1869459.1869479
http://dx.doi.org/10.1145/2508075.2514572
http://dx.doi.org/10.1145/2647508.2647517
http://dx.doi.org/10.1145/1706299.1706343
http://dx.doi.org/10.1145/3062341.3062381
http://dx.doi.org/10.1145/2509578.2509581
http://dx.doi.org/10.1145/2384577.2384587
http://dx.doi.org/10.1145/2660193.2660223

