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Abstract

Many dynamic languages such as Ruby, Python and Perl offer some
kind of functionality for writing parts of applications in a lower-
level language such as C. These C extension modules are usually
written against the API of an interpreter, which provides access
to the higher-level language’s internal data structures. Alternative
implementations of the high-level languages often do not support
such C extensions because implementing the same API as in the
original implementations is complicated and limits performance.

In this paper we describe a novel approach for modular com-
position of languages that allows dynamic languages to support
C extensions through interpretation. We propose a flexible and
reusable cross-language mechanism that allows composing mul-
tiple language interpreters, which run on the same VM and share
the same form of intermediate representation — in this case abstract
syntax trees. This mechanism allows us to efficiently exchange run-
time data across different interpreters and also enables the dynamic
compiler of the host VM to inline and optimize programs across
multiple language boundaries.

We evaluate our approach by composing a Ruby interpreter with
a C interpreter. We run existing Ruby C extensions and show how
our system executes combined Ruby and C modules on average
over 3 x faster than the conventional implementation of Ruby with
native C extensions, and on average over 20x faster than an ex-
isting alternate Ruby implementation on the JVM (JRuby) call-
ing compiled C extensions through a bridge interface. We demon-
strate that cross-language inlining, which is not possible with native
code, is performance-critical by showing how speedup is reduced
by around 50% when it is disabled.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Run-time environments, Code generation,
Interpreters, Compilers, Optimization
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1. Introduction

Most programming languages offer some kind of functionality for
calling routines in modules that are written in another language.
There are multiple reasons why programmers want to do this, in-
cluding to run modules already written in another language, to
achieve higher performance than is normally possible in the pri-
mary language, or generally to allow different parts of the system
to be written in the most appropriate language.

Dynamically typed and interpreted languages such as Perl,
Python and Ruby often provide support for running extension mod-
ules written in the lower-level language C, known as C extensions
or native extensions. We use the term C extension, because as we
will show that native execution is not an essential property of these
modules. C extensions are written in C or a language, which can
meet the same ABI such as C++, and are dynamically loaded and
linked into the interpreter as a program runs. The APIs that these
extensions are written against often simply provide direct access
to the internal data structures of the primary implementation of the
language. For example, C extensions for Ruby are written against
the API of the original implementation of Ruby, known as MRI'.
This API contains functions that allow C code to manipulate Ruby
objects at a high level, but also includes routines that let you di-
rectly access pointers to internal data such as the character array in
a string object. Figure 1 shows the rb_ary_store function, which
is part of this interface and allows a C extension to store an element
into a Ruby array.

typedef void* VALUE;
void rb_ary_store(VALUE ary, long idx, VALUE val);

Figure 1: Function to store a value into an array as part of the Ruby
APL

This model for C extensions worked well for the original im-
plementations of these languages. As the API directly accesses the
implementation’s internal data structures, the interface is power-
ful, has low overhead, and was simple for the original implemen-

! MRI stands for Matz’ Ruby Interpreter, after the creator of Ruby, Yukihiro
Matsumoto.



tations to add: all they had to do was make their header files pub-
lic and support dynamic loading of native modules. However, as
popularity of these languages has grown, alternative projects have
increasingly attempted to re-implement them using modern virtual
machine technology such as dynamic or just-in-time (JIT) compi-
lation, partial evaluation, advanced garbage collection, and special-
ization. Such projects typically use significantly different internal
data structures to achieve better performance, so the question there-
fore is how to provide the same API that the C extensions expect.

Some solutions to this problem are not realistic due to the scale
at which these languages are used. For example, both Ruby and
Python provide a Foreign Function Interface (FFI) with routines for
dynamically linking and calling compiled C code and for marshal-
ing values in C’s type system. Here there is no need for a wrapper
using the language specific API as C function can be called. How-
ever these FFIs have come later in the language development, and
asking developers to rewrite their C extensions so that the FFI can
use them is not realistic due to the large body of existing code.

One more realistic solution is to implement a bridging layer be-
tween the API that C extensions expect and the actual internal im-
plementation of the language. However, this introduces costs for
lowering the optimized data structures used by the more modern
implementation in order to allow them to be accessed using the ex-
isting API. Performance is usually one goal of using C extensions,
so adding a bridging layer is not ideal.

For these reasons, modern implementations of dynamic lan-
guages often have limited support for C extensions. For example,
the JRuby [29] implementation of Ruby on top of the Java Virtual
Machine (JVM) [6, 7] had limited experimental support for C ex-
tensions until this was removed after the work proved to be too
complicated to maintain and the performance too limited [3, 9].

Lack of support for C extensions is often given as one of the
major reasons for the slow adoption of modern implementations of
such languages. For example, the top-rated answer on the popular
technical forum Stack Overflow for why not to use PyPy is limited
C extension support [10]. In modular architectures, and particularly
in web services, which often use these kind of dynamic languages,
applications are often built on deep stacks of modules where de-
pendencies on C extensions become difficult to remove. We have
surveyed 421,817 Ruby modules (known as gems) available in the
RubyGems repository. Among these, almost 14 % have a transitive
dependency on a gem containing a C extension—although without
actually running the gems it is not possible to clarify whether the C
extensions are optional or required.

We would like to enable modern implementations of languages
to support C extensions with minimal cost for implementing the
existing APIs, and without preventing any advanced optimizations
that these implementations use to improve the performance.

Our goal is to run multi-language applications on separate lan-
guage interpreters, but within the same virtual machine and based
on a common framework and using the same kind of intermediate
representation. We propose a novel mechanism that allows com-
posing these interpreters, rather than accessing foreign functions
and objects via an FFI. Foreign objects and functions are accessed
by sending language-independent messages. We resolve these mes-
sages at their first execution by adapting the abstract syntax tree
(AST) of an application at runtime in such a way that it can deal
with foreign objects and functions directly, i.e., we replace these
language-independent messages with language-specific IR snippets
that implement efficient accesses to foreign objects and functions.
This approach allows composing interpreters at their AST level and
makes language boundaries completely transparent to VM perfor-
mance optimizations.

Key benefits of our approach include:

Modular composition of languages: Our mechanism is language-
independent and allows developers composing arbitrary lan-
guage interpreters that support this message-based mechanism
easily. In this paper we describe how we compose a Ruby inter-
preter and a C interpreter, but the techniques are immediately
applicable to other languages with C extensions such as Python,
and for other combinations of languages beside dynamic lan-
guages and C.

No object marshaling or conversion: Each language implemen-
tation can use its own implementation of internal data struc-
tures. However they can be efficiently exchanged across lan-
guages, as our mechanism avoids the conversion or marshaling
of run-time data between languages completely and uses mes-
sages instead. Our C interpreter can access Ruby objects with-
out lowering optimized data structures and vice versa.

Cross-language inlining: Our interoperability mechanism and
shared ASTs makes the language boundaries caused by a for-
eign function call or a foreign object access completely trans-
parent to the dynamic compiler. Removing language boundaries
allows the compiler to inline and optimize across different lan-
guages.

To evaluate our approach we composed a Ruby interpreter with
a C interpreter to support C extensions for Ruby. Our solution
is source-compatible with the existing Ruby API. In our C inter-
preter, we substitute all invocations to the Ruby API at runtime
with language-independent messages that use our cross-language
mechanism. Our system is able to run existing almost unmodified
C extensions for Ruby written by companies and used today in pro-
duction. Our evaluation shows that it outperforms MRI running the
same C extensions compiled to native code by a factor of over 3.

We describe our interoperability mechanism in the context of
C extensions for Ruby. However, our approach will also work for
other cross-language interfaces.

In summary, this paper contributes the following:

e We present a novel language interoperability mechanism that
allows programmers to compose interpreters in a modular way.
It allows exchanging data between different interpreters without
marshaling or conversion.

e We describe how our interoperability mechanism avoids compi-
lation barriers between languages that would normally prevent
optimizations across different languages.

e We describe how we use this mechanism to seamlessly compose
our Ruby and C interpreters, producing a system that can run
existing Ruby C extensions

e We provide an evaluation, which shows that our approach works
for real C extensions and runs faster than all existing Ruby
engines.

2. System Overview

We base our work on Truffle [43], a framework for building high-
performance language implementations in Java. Truffle language
implementations are AST interpreters. This means that the input
program is represented as an AST, which can be evaluated by
performing an execution action on nodes recursively. All nodes
of this AST, whatever language they are implementing, extend a
common Node class.

An important characteristic of a Truffle AST is that it is self-
optimizing [42]. Nodes or subtrees of a Truffle AST can replace
themselves with specialized versions at runtime. For example, Truf-
fle trees self-optimize as a reaction to type feedback, replacing an
add operation node that receives two integers with a node that only
performs integer addition and so is simpler. The Truffle framework



encourages the optimistic specialization of trees where nodes can
be replaced with a more specialized node that applies given some
assumption about the running program. If an assumption turns out
to be wrong as the program continues to run, a specialized tree
can undo the optimization and transition to a more generic ver-
sion that provides the functionality for all required cases. This self-
optimization via tree rewriting is a general mechanism of Truffle
for dynamically optimizing code at runtime and is used across all
Truffle languages.

When a Truffle AST has arrived at a stable state with no
more node replacements occurring, and when execution count of
a tree exceeds a predefined threshold, the Truffle framework par-
tially evaluates [43] the trees and uses the Graal compiler [30] to
dynamically-compile the AST to highly optimized machine code.
Graal is an implementation of a dynamic compiler for the JVM that
is written in Java. This allows it to be used as a library by a running
Java program, including the Truffle framework.

In this research we have composed two existing languages im-
plemented in Truffle, Ruby and C.

JRuby+Truffle: Ruby is a dynamically-typed object-oriented lan-
guage inspired by Smalltalk and Perl. Ruby is widely used with
the Rails web framework for quick development of database-
backed web applications, but it is also applied in fields as di-
verse as bioinformatics [19] and graphics processing [32].

The Truffle implementation of Ruby [33] was developed as a
standalone implementation, but after open sourcing it has been
merged into the existing JVM-based implementation of Ruby,
JRuby. JRuby began as a simple AST interpreter ported directly
from the original implementation of Ruby, MRI, but gained
bytecode generation and then later was a key motivator of
development of the invokedynamic instruction [31] for better
support of dynamic languages on the JVM.

JRuby is the foundation, on which our implementation is built,
but beyond the parser and some utilities, little of the two sys-
tems are currently shared and JRuby+Truffle should be consid-
ered entirely separate from JRuby for this discussion.

TruffleC: C is a statically typed language and was intended to be
easily compilable to machine code. It offers low-level memory
access, provides language constructs that map efficiently to ma-
chine code instructions and requires minimal run-time support.

TruffleC [22] is the C language implementation on top of
Truffle. It dynamically executes C code on top of a JVM
and performs well compared to industry standard C compil-
ers such as GCC [14] or LLVM/Clang [12] in terms of peak-
performance [22].

Despite C being a static language, TruffleC uses the self-
optimization capability of Truffle: It uses polymorphic inline
caches [24] to efficiently handle function pointer calls, profiles
branch probabilities to optimistically remove never executed
code, or profiles runtime values and replaces them by constants
if they do not change over time.

TruffleC also has the ability to access native C libraries of which
no source code is available, using the Graal native function in-
terface [21]. This interface can directly access native functions
from Java. However this functionality is not used in this evalu-
ation.

Figure 2 summarizes the layered approach of hosting language
implementations with Truffle. The Truffle framework provides
reusable services for language implementations, such as dynamic
compilation, automatic memory management, threads, synchro-
nization primitives and a well-defined memory management. Truf-
fle runs on top of the Graal VM [30, 35], a modification of the
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Figure 2: The layered approach of Truffle: The Truffle framework
on top of the Graal VM hosts JRuby+Truffle and TruffleC.

Oracle HotSpot™ VM. The Graal VM adds the Graal compiler
but reuses all other parts, including the garbage collector, the inter-
preter, the class loader and so on, from HotSpot.

3. Language Interoperability on Top of Truffle

In previous work [20] we drafted the novel idea of a cross-language
mechanism that allows us to compose arbitrary interpreters effi-
ciently on top of Truffle. Our goal for this mechanism is that it re-
tains the modular way of implementing languages on top of Truffle
and meets the following criteria:

e Languages can be treated as modules and are composable. An
implementation of a cross-language interface, such as C exten-
sions for Ruby, requires very little effort because languages that
support this mechanism are already interoperable.

We do not want to introduce a new object model that all Truffle
guest languages have to share, which is based on memory lay-
outs and calling conventions. Although some languages, such
as Python and Ruby, have superficially similar object mod-
els, a shared object model is not applicable to a wider set of
languages. For example, JRuby+Truffle uses a specific high-
performance object model [41] to represent Ruby runtime data,
whereas TruffleC stores C runtime data such as arrays and struc-
tures directly on the native heap [22] as is suitable for the se-
mantics of C. We introduce a common interface for objects that
is based on code generation via ASTs. Our approach allows
sharing language specific objects (with different memory rep-
resentations and calling conventions) across languages, rather
than lowering all objects to a common representation.

We want to make the language boundaries completely trans-
parent to Truffle’s dynamic compiler, in that a cross-language
call should have exactly the same representation as an intra-
language call. This transparency allows the JIT compiler to in-
line and apply advanced optimizations such as constant propa-
gation and escape analysis across language boundaries without
modifications.

In the following sections we describe in detail how we extend
the Truffle framework with this mechanism. We use the mechanism
to access Ruby objects from C and to forward Ruby API calls
from the TruffleC interpreter back to the JRuby+Truffle interpreter.
Therefore our system includes calls both from Ruby to C and from
C back to Ruby.

Using ASTs as an internal representation of a user program
already abstracts away syntactic differences of object accesses and
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Figure 3: Language independent object access via messages.

function calls in different languages. However, each language uses
its own representation of runtime data such as objects, and therefore
the access operations differ. Our research therefore focused on how
we can share such objects with different representations across
different interpreters.

In this paper we call every non-primitive entity of a program an
object. This includes Ruby objects, classes, modules and methods,
and C immediate values and pointers. An object that is being
accessed by a different language than the language of its origin
is called a foreign object. A Ruby object used by a C extension is
therefore considered foreign in that context. If an object is accessed
in the language of its origin, we call it a regular object. A Ruby
object, used by a Ruby program is therefore considered regular.
Object accesses are operations that can be performed on objects,
e.g. method calls or property accesses.

3.1 Language-independent Object Accesses

In order to make objects (objects that implement TruffleObject)
shareable across languages, we require them to support a common
interface. We implement this as a set of messages:

Read: We use the Read message to read a member of an object
denoted by the member’s identity. For example, we use the
Read message to get properties of an object such as a field or a
method, and to read elements of an array.

Write: We use the Write message to write a member of an object
denoted by its identity. Analogous to the Read message, we use
it to write object properties.

Execute: The Execute message, which can have arguments, is used
to evaluate an object. For example, it can evaluate a Ruby
method or invoke the target of a C function pointer.

Unbox: If the object represents a boxed numeric value and receives
an Unbox message, this message unwraps the boxed value and
returns it. For example, if an Unbox message is sent to a Ruby
Fixnum, the object returns its value as a 4 byte integer value.

We call an object shareable if we can access it via these
language-independent messages. Truffle guest-language imple-
mentations can insert language-independent message nodes into
the AST of a program and send these messages in order to access a
foreign object. Figure 3a shows an AST that accesses a Ruby array
via messages in order to store value at index 0. This interpreter
first sends a Read message to get the array setter function []= from
the array object (in Ruby writing to an element in an array is per-
formed via a method call). Afterwards it sends an Execute message

to evaluate this setter function. In Figure 3a, the color blue denotes
language-independent nodes, such as message nodes.

Given this mechanism, Truffle guest languages can access any
foreign object that implements this message-based interface. If an
object does not support a certain message we report a runtime error
with a high-level diagnostic message.

3.2 Message Resolution

The receiver of a cross-language message does not return a value
that can be further processed. Instead, the receiver returns an AST
snippet — a small tree of nodes designed for insertion into a
larger tree. This AST snippet contains language-specific nodes
for executing the message on the receiver. Message resolution re-
places the AST node that sent a language-independent message
with a language-specific AST snippet that directly accesses the re-
ceiver. After message resolution an object is accessed directly by a
receiver-specific AST snippet rather than by a message.

During the execution of a program the receiver of an access can
change if it is a non-final value, and so the target language of an
object access can change as well. Therefore we need to check the
receiver’s language before we directly access it. If the foreign re-
ceiver object originates from a different language than the one seen
so far we access it again via messages and do the message resolu-
tion again. If an object access site has varying receivers, originating
from different languages, we call the access language polymorphic.
To avoid a loss in performance, caused by a language polymorphic
object access, we embed AST snippets for different receiver lan-
guages in a chain similar to a conventional inline cache [24], except
that here the cache handles multiple languages as well as multiple
classes of receivers.

Figure 3b illustrates the process of message resolution and Fig-
ure 3c shows the AST of Figure 3a after message resolution. Mes-
sage resolution replaced the Read message by a Ruby-specific node
that accesses the getter function []=. The Execute method is re-
placed by a Ruby-specific node that evaluates this getter method.
Message resolution also places other nodes into this AST, which
check whether the receiver is really a Ruby object. If not, our mech-
anism will again send the messages Read and Execute. Instead
of executing the Ruby-specific nodes, the AST then executes the
message-nodes again.

Message resolution and building object accesses at runtime has
the following benefits:

Language independence: Messages can be sent to any shareable
object. The receiver’s language of origin does not matter and
messages resolve themselves to language-specific operations



at runtime. This mechanism is not limited to C extensions for
Ruby but can be used for any other language composition.

No performance overhead: Message resolution only affects the
application’s performance upon the first execution of an object
access for a given language. Once a message is resolved and as
long as the languages used remain stable, the application runs
at full speed.

Cross-language inlining: Message resolution allows the dynamic
compiler to inline methods even across language boundaries.
By generating AST snippets for accessing foreign objects we
avoid the barriers from one language to another that would nor-
mally prevent inlining. Our approach creates a single AST that
merges different language-specific AST parts. The language-
specific parts are completely transparent to the JIT compiler.
Removing the language boundaries allows the compiler to in-
line method calls even if the receiver is a foreign object. Widen-
ing the compilation unit across different languages is impor-
tant [16, 36] as it enables further optimizations such as special-
ization and constant propagation.

3.3 Shared Objects and Shared Primitive Values

Like a regular object access, a foreign object access produces
and returns a result. Our interoperability mechanism distinguishes
between two types of values that a foreign object access can return:

Object types: If a foreign object access returns a non-primitive
value, this object again has to be shareable in the sense that
it understands the messages Read, Write, Execute, and Unbox.
If the returned object is accessed later, it is accessed via these
messages.

Primitive types: In order to exchange primitive values across dif-
ferent languages we define a set of shared primitive types. We
refer to values with such a primitive type as shared primitives.
The primitive types include signed and unsigned integer types
(8, 16, 32 and 64 bit versions) as well as floating point types
(32 and 64 bit versions) that follow the IEEE floating point 754
standard [2]. The vast majority of languages use some of these
types, and as they are provided by the physical architecture their
semantics are usually identical. In the course of a foreign object
access, a foreign language maps its language-specific primitive
values to shared primitive values and returns them as language-
independent values. When the host language receives a shared
primitive value it again provides a mapping to host language-
specific values.

3.4 JRuby+Truffle: Foreign Object Accesses and Shareable
Ruby Objects

In Ruby’s semantics there are no non-reference primitive types
and every value is logically represented as an object, as in the
tradition of languages such as Smalltalk. Also, in contrast to other
languages such as Java, Ruby array elements, hash elements, or
object attributes cannot be accessed directly but only via getter and
setter calls on the receiver object. For example, a write access to a
Ruby array element is performed by calling the [1= method of the
array and providing the index and the value as arguments.

In our Ruby implementation all runtime data objects as well as
all Ruby methods are shareable in the sense that they implement
our message-based interface. Figure 3 shows how a Ruby array can
be accessed via messages.

Ruby objects that represent numbers, such as Fixnum and
Float that can be simply represented as primitives common to
many languages, also support the Unbox message. This message
simply maps the boxed value to the relative shared primitive. For
example, a host language other than Ruby might send an Unbox

message whenever it needs the object’s value for an arithmetic
operation.

3.5 TruffleC: Foreign Object Accesses and shareable C
Pointers

TruffleC can share primitive C values, mapped to shared primi-
tive values, as well as pointers to C runtime data with other lan-
guages. In our implementation, pointers are objects that imple-
ment the message interface, which allows them to be shared across
all Truffle guest language implementations. TruffleC represents all
pointers (so including pointers to values, arrays, structs or func-
tions) as CAddress Java objects that wrap a 64-bit value [23]. This
value represents the actual referenced address on the native heap.
Besides the address value, a CAddress object also stores type in-
formation about the referenced object. Depending on the type of
the referenced object, CAddress objects can resolve the following
messages:

e A pointer to a C struct can resolve Read/Write messages, which
access members of the referenced struct.

e A pointer to an array can resolve Read/Write messages that
access a certain array element.

e Finally, CAddress objects that reference a C function can be
executed using the Execute message.

When JRuby+Truffle accesses a function that is implemented
within a C extension, it will use an Execute message to invoke
it. Message resolution will bridge the gap between both languages
automatically at runtime. The language boundaries are transpar-
ent to the dynamic compiler and it can inline these C extension
functions just like normal Ruby functions.

TruffleC allows binding foreign objects to pointer variables de-
clared in C. Hence, pointer variables can be bound to CAdress ob-
jects as well as shared foreign objects. TruffleC can then derefer-
ence these pointer variables via messages.

4. C Extensions for Ruby

Developers of a C extension for Ruby access the API by including
the ruby.h header file. We want to provide the same API as
Ruby does for C extensions, i.e., we want to provide all functions
that are available when including ruby.h. To do so we created
our own source-compatible implementation of ruby.h. This file
contains the function signatures of all of the Ruby API functions
that were required for the modules we evaluated, as described
in the next section. We believe it would be tractable to continue
the implementation of API routines so that the set available is
reasonably complete.

Figure 4 shows an excerpt of this header file.

We do not provide an implementation for these functions in C
code. Instead, we implement the API by substituting every invoca-
tion of one of the functions at runtime with a language-independent
message send or directly access the Ruby runtime.

We can distinguish between local and global functions in the
Ruby API:

4.1 Local Functions

The Ruby API also offers a wide variety of functions that are
used to access and manipulate Ruby objects from within C. In the
following we explain how we substitute the Ruby API functions
rb_ary_store, rb_iv_get, rb_funcall, and FIX2INT:

® rb_ary_store:
Normally TruffleC would insert call nodes for regular function
calls, however, TruffleC handles invocations of these API func-
tions differently. Consider the invocation of the rb_ary_store



1 typedef VALUE void*;

2 typedef ID void*;

3

4 // Define a C function as a Ruby method
5 void rb_define_method

6 (VALUE class, const char* name,

7 VALUE(*func)(), int argc);

8

9 // Store an array element into a Ruby array
10 void rb_ary_store

11 (VALUE ary, long idx, VALUE val);
12

13 // Get the Ruby internal representation of an
14 // identifier
15 ID rb_intern(const char* name);

17 // Get instance variables of a Ruby object
18 VALUE rb_iv_get(VALUE object,
19 const char* iv_name)

21 // Invoke a Ruby method from C
22 VALUE rb_funcall(VALUE receiver ID method_id,
23 int argc, ...);

25 // Convert a Ruby Fixnum to C long
26 long FIX2INT(VALUE value);

Figure 4: Excerpt of the ruby .h implementation.

VALUE array
VALUE value

.. 3 // Ruby array of Fixnums
.5 // Ruby Fixnum

A wNR

rb_ary_store(array, 0, value);

Figure 5: Calling rb_ary_store from C.

function (Figure 5): Instead of a call node, TruffleC inserts mes-
sage nodes that are sent to the Ruby array (array). The AST
of the C program (Figure 5) now contains two message nodes
(namely a Read message to get the array setter method []= and
an Execute message to eventually execute the setter method, see
Figure 3a). Upon first execution these messages are resolved
(Figure 3b), which results in a TruffleC AST that embeds a
Ruby array access (Figure 3c).

rb_iv_get:

In contrast to Ruby object attributes, which are accessed via
getter and setter methods, Ruby instance variables can be ac-
cessed directly. Therefore the substitution of rb_iv_get sends
a Read message and provides the name of the accessed instance
variable.

rb_funcall:

The function rb_funcall allows calling a Ruby method from
within a C function. We substitute this call again by two mes-
sages. The first one is a Read message that resolves the method
from the Ruby receiver object. The second message is an Exe-
cute message that finally executes the method.

e FIX2INT:
We replace functions that convert numbers from Ruby objects

to C primitives (such as FIX2INT, Fixnum to integer) by Unbox
messages, sent to the Ruby object (VALUE value). As the nam-
ing convention suggests, FIX2INT is usually implemented as a
C preprocessor macro. For the gems we studied this difference
did not matter, and if it did we could implement it as a macro
that simply called another function.

4.2 Global Functions

The Ruby API offers various different functions that allow devel-
opers to manipulate the global object class of a Ruby application
from C or to access the Ruby engine.

The API includes functions to define global variables, mod-
ules, or global functions (e.g., rb_define _method) etc. Also, these
functions allow developers to retrieve the Ruby internal representa-
tion of an identifier (e.g. rb_intern). In order to substitute invoca-
tions of these API functions, TruffleC accesses the global object of
the Ruby application using messages or directly accesses the Ruby
engine.

For instance, we substitute calls to rb_define method and
rb_intern as follows:

® rb_define method:

To define a new method in a Ruby class, developers use the
rb_define method function. TruffleC substitutes this func-
tion invocation and sends a Wrife message to the Ruby class
object (first argument, VALUE class). The Ruby class ob-
ject resolves this message and adds the C function pointer
(VALUE (*func) ()) as a new method. The function pointer
(VALUE (*func) ()) is represented as a CAddress object. When
invoking the added function from within Ruby, JRuby+Truffle
uses an Execute message and can therefore directly invoke this
C function.

rb_intern:

rb_intern converts a C string to a reference to a shared im-
mutable Ruby object which can be compared by reference to
increase performance. TruffleC substitutes the invocation of
this method and directly accesses the JRuby+Truffle engine.
JRuby+Truffle exposes a utility function that allows resolving
these immutable Ruby objects.

Given this implementation of the API we can run C extensions
without modification and are therefore compatible with the Ruby
MRI API. Given the interoperability mechanism presented in this
paper, implementing this API via message-based substitutions was
a trivial task: The implementation of TruffleC simply uses the
interoperability mechanism and replaces invocations of Ruby API
methods with messages. Besides these changes, no modifications of
JRuby+Truffle or TruffleC were necessary to support C extensions
for Ruby. This demonstrates that our cross-language mechanism is
applicable in practice and makes language compositions easy.

4.3 Pointers to Ruby Objects

A normal pointer to a Ruby object is modeled in C as a simple Java
reference to a sharable TruffleObject. If additional indirection
is introduced and a pointer is taken to a Ruby object, TruffleC cre-
ates a TruffleObjectReference object (which itself is sharable)
that wraps the pointee. Additional wrappers can achieve arbitrary
levels of indirection. As with any object that does not escape, as
long as the pointer objects are created and used within a single com-
pilation unit (which may of course include multiple Ruby and C
methods) the compiler can optimize and remove these indirections
(see Section 5) and thus do not introduce a time or space overhead.

However, C also allows arithmetic on pointers. This is fre-
quently used in Ruby C extensions, as the API allows a pointer
to be obtained to internal data structures such as the C array that
backs a Ruby string or array. It is then common to iterate directly



over these array pointers rather than using Ruby API functions, in
order to achieve higher performance. Supporting this in JRuby is a
major source of overhead as the JVM uses handles to specifically
disallow pointers to object data via JNI. JRuby’s solution was to
copy string and array data into the native heap and back at every
transition from Ruby to C [3] after a pointer has been requested.

To support this in TruffleC a second wrapper, a sharable
TruffleObjectReferenceOffset object, holds both the object
reference (TruffleObjectReference) and the offset from that
address. Further pointer arithmetic just produces a new wrapper
with a new offset. Any dereference of this object-offset wrapper
will use the same messages to read or write from the object as a
normal array access would.

5. Evaluation

We evaluated the performance in terms of running time for our im-
plementation of Ruby and C extensions against other existing im-
plementations of Ruby and its C extension API. Ruby is primarily
used as a server-side language, so we are interested in peak perfor-
mance of long running applications after an initial warm-up.

5.1 Benchmarks

We wanted to evaluate our approach on real-world Ruby code and
C extensions that have been developed to meet a real business
need. Also, we wanted to use code that is computationally bound
rather than I/O intensive, as our system does nothing to improve
I/0O performance.

To the best of our knowledge, there is no benchmark suite that
evaluates the performance of native C extensions of Ruby exten-
sively. Therefore we use the existing modules chunky_png [38]
and psd.rb [32], which are both open source and freely avail-
able on the RubyGems website. chunky_png is a module for read-
ing and writing image files using the Portable Network Graphics
(PNG) format. It includes routines for resampling, PNG encoding
and decoding, color channel manipulation, and image composition.
psd.rb is a module for reading and writing image files using the
Adobe Photoshop format. It includes routines for color space con-
version, clipping, layer masking, implementations of Photoshop’s
color blend modes, and some other utilities.

Both modules have separately available C extension modules to
replace key routines with C code, known as oily_png [39] and
psd-native [26], which allows us to compare the C extension
against the pure Ruby code. These modules, written in C, heavily
access Ruby objects, which makes them good candidates for our
evaluation.

It is important to note that the C extensions are designed to
produce the same output as the Ruby code, but they are not always
identical in how they achieve this. For example, where the Ruby
code might use array-indexing functions, the C code might use
pointer arithmetic.

There are 43 routines in the two gems for which a C extension
equivalent is provided. All 43 routines were set up in a benchmark
harness for evaluation. Routine output was compared for each iter-
ation to check for incorrect results. To focus on computational per-
formance, I/O operations such as reading from files were mocked
to read from memory.

5.2 Required Modifications

Running these gems on our system required just one minor modi-
fication for compatibility: we had to replace two instances of stack
allocation of a variable-sized array with heap allocation viamalloc
and free. Variable-sized array allocation on the stack is a feature
from C99 which TruffleC does not support yet. We will address
completeness issues of our system in future work.

We also had to fix two bugs where an incorrect type was used,
int instead of VALUE, causing a tagged integer to be used as if it
was untagged. This was an implementation bug in the gem rather
than a TruffleC incompatibility, as it was causing a different re-
sult between the Ruby module and the C extension on all Ruby
language implementations. However, TruffleC was able to differ-
entiate between the two types where the error was missed by the
original authors when running with GCC?.

Apart from these minor modifications we are running all of the
native routines from two non-trivial gems unmodified.

5.3 Compared Implementations

The standard implementation of Ruby is known as MRI, or CRuby.
It is a bytecode interpreter, with some simple optimizations such as
inline caches for method dispatch. MRI has excellent support for
C extensions, as the API directly interfaces with the internal data
structures of MRI. We evaluated version 2.1.2.

Rubinius is an alternative implementation of Ruby using a
significant VM core written in C++ and using LLVM to implement
a simple JIT compiler, but much of the Ruby specific functionality
in Rubinius is implemented in Ruby. Rubinius uses internal data
structures and implementation techniques different from those in
MRI. Most importantly, it uses C++ instead of C; so to implement
the C extension API, Rubinius has a bridging layer. We evaluated
version 2.2.10.

JRuby is an implementation of Ruby on the Java Virtual Ma-
chine. It uses dynamic classfile generation and the invokedynamic
instruction to JIT compile Ruby to JVM bytecode, and thus to ma-
chine code. JRuby used to have experimental support for running
C extensions, but after initial development it became unmaintained
and has since been removed. We evaluated the last major version
where we found that the code still worked, version 1.6.0.

JRuby+Truffle is our system, using Truffle and Graal. It inter-
faces to TruffleC to provide support for C extensions. To explore the
performance impact of cross-language dynamic inlining, which is
only possible in our system, we also evaluated JRuby+Truffle with
this optimization disabled. Our TruffleC implementation and the
shared messaging API are not yet open source, but in the Ruby im-
plementation there are only minor differences with the open source
version of JRuby+Truffle at commit df2aaff.

In Section 6 we describe how each of the compared implemen-
tations support C extensions in more depth.

5.4 Experimental Setup

All experiments were run on a system with 2 Intel Xeon E5345
processors with 4 cores each at 2.33 GHz and 64 GB of RAM,
running 64bit Ubuntu Linux 14.04. Where an unmodified Java
VM was required, we used the 64bit JDK 1.8.0u5 with default
settings. For JRuby+Truffle we used the Graal VM version 0.3.
Native versions of Ruby and C extensions were compiled with the
system standard GCC 4.8.2.

Due to the extreme differences in performance, the benchmark
input parameters were configured so that each iteration runs in the
conventional Ruby interpreter without the C extensions for at least
several seconds. We ran 100 iterations of each benchmark to allow
the different VMs to warm up and reach a steady state so that
subsequent iterations are identically and independently distributed.
This was verified informally using lag plots [25]. We then sampled
the final 20 iterations and took a mean of their runtime as the
reported time. Where we report an error we use a 95% confidence
interval calculated using the Kalibera-Jones bootstrap method [25],

2 We have reported this issue to the module’s authors as https://github.
com/layervault/psd_native/pull/4.
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Figure 6: Summary of speedup across all benchmarks.

as implemented by Barrett et al [18]. Where we summarize across
different benchmarks we report a geometric mean [1].

5.5 Results

Figure 6 shows a summary of our results. We show the geometric
mean speedup of each evaluated implementation over all bench-
marks, relative to the speed at which MRI ran the Ruby code with-
out the C extension. When using MRI the average speedup of us-
ing the C extension (MRI With C Extension, Figure 6) over pure
Ruby code is around 11 x. Rubinius (Rubinius With C Extensions,
Figure 6) only achieves around one third of this speedup. Although
Rubinius generally achieves better performance than MRI for Ruby
code [33], its performance for C extensions is limited by having to
meet MRI’s API, which requires a bridging layer. Rubinius failed
to make any progress with 3 of the benchmarks in a reasonable
time frame so they were considered to have timed out. The per-
formance of JRuby (JRuby With C Extensions, Figure 6) is 2.5X
faster than MRI running the pure Ruby version of the benchmarks
without the C extensions. JRuby uses JNI [27] to access the C ex-
tensions from Java, which causes a significant overhead. Hence it
can only achieve 25% of the MRI With C Extension performance.
JRuby failed to run one benchmark with an error about an incom-
plete feature. As with Rubinius, 17 of the benchmarks did not make
progress in reasonable time. Despite a 8§GB maximum heap, which
is extremely generous for the problems sizes, some benchmarks in
JRuby were spending the majority of their time in GC or were run-
ning out of heap.

When running the C extension version of the benchmarks on
top of our system (JRuby+Truffle With C Extension, Figure 6) the
performance is over 32x better than MRI without C extensions and
over 3x better than MRI With C Extension. When compared to the
other alternative implementations of C extensions, we are over 8 x
faster than Rubinius, and over 20x faster than JRuby, the previous
attempt to support C extensions for Ruby on the JVM. We also
run all the extensions methods correctly, unlike both JRuby and
Rubinius.

We can explain this speedup as follows:

In a conventional implementation of C extensions, where the Ruby
code runs in a dedicated Ruby VM and the C code is compiled and
run natively, the call from one language to another is a barrier that
prevents the implementation from performing almost any optimiza-
tions. In our system the barrier between C and Ruby is no difterent

to the barrier between one Ruby method and another. We found that
allowing inlining between languages is a key optimization, as it per-
mits many other advanced optimizations in the Graal compiler. For
example, partial escape analysis [37] can trace objects, allocated in
one language but consumed in another, and eventually apply scalar
replacement [37] to remove the allocation. Other optimizations that
benefit from cross language inlining include constant propagation
and folding, global value numbering and strength reduction. When
disabling cross-language inlining (JRuby+Truffle With C Extension
(No Inline), Figure 6) the speedup over MRI is roughly halved, al-
though it is still around 15x faster, which is around 39% faster
than MRI With C Extension. In this configuration the compiler can-
not widen its compilation units across the Ruby and C boundaries,
which results in performance that is similar to MRI.

Figure 7 shows detailed graphs for all benchmarks and Figure 8
shows tabular data. The first column of the tabular shortly describes
the application of each benchmark that we evaluate. All other
columns show the results of our performance evaluation of the
different approaches. We show the absolute average time needed
for a single run, the error, and the relative speedup to MRI without
C extensions.

The speedup achieved for MRI With C Extensions compared to
MRI running Ruby code (the topmost bar of each cluster, in red)
varies between slightly slower at 0.69x (psd-blender-compose)
and very significantly faster at 84x (chunky-operations-com-
pose).

The speedup of JRuby+Truffle With C Extensions compared to
MRI varies between 1.37x faster (chunky-encode-png-image)
up to 101x faster (psd-compose-exclusion). When comparing
our system to MRI With C Extensions we perform best on bench-
marks that heavily access Ruby data from C but otherwise do lit-
tle computation on the C side. These scenarios are well suited for
our system because our compiler can easily optimize foreign ob-
ject accesses and cross-language calls. In some benchmark such
as chunky-color-r the entire benchmark, including Ruby and C,
will be compiled into a single compact machine code routine. How-
ever, if benchmarks do a lot of computations on the C side and ex-
change little data the performance of our system is similar to MRI
With C extensions.

If we just consider the contribution of a high performance reim-
plementation of Ruby and its support for C extensions, then we
should compare ourselves against JRuby. In that case our imple-
mentation is highly successful at on average over 20 faster. How-
ever we also evaluate against MRI directly running native C and
find our system to be on average over 3x faster, indicating that
our system might be preferable even when it is possible to run the
original native code.

6. Related Work

Although we are not aware of any other implementation of support
for C extensions using an interpreter, we can compare our work
against other projects that seek to compose two languages, and
against existing support for C extensions or alternatives in Ruby
implementations.

6.1 Unipycation

The work that is closest to our interoperability mechanism is that of
Barrett et al. [17], in which the authors describe a novel combina-
tion of Python and Prolog called Unipycation. We share the same
goals, namely to retain the performance of different language parts
when composing them and to find an approach that is applicable
for any language composition.

However, our approach is quite different both in application and
technique. We are concerned in this research in running existing
C extensions, so there is immediate utility. As described earlier,
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Figure 7: Speedup for individual benchmarks.
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Benchmark Application > frr & > frr & > frr & > frr & > frr & > frr &
chunky-resampling-steps-residues Calculate offsets for scaling an image 4.1615 0.0006 1.0000f 0.8884 0.0003  4.6844| 1.0955 3.7986 failed 0.6809 0.0075 6.1113 2.9943 0.0158  1.3898
chunky-resampling-steps Calculate just the integer offsets for scaling 3.1536 0.0032 1.0000f 0.1896 0.0003 16.6289 0.2635 11.9675 0.1445 0.0002 21.8320| 0.4222 0.0002 7.4695
chunky-resampling-nearest-neighbor Scale an image with no interpolation 4.8069 0.0644 1.0000f 0.5449 0.0001 8.8212 1.0989 4.3744 0.2354 0.0022 20.4203| 2.3568 0.0303 2.0396
chunky-resampling-bilinear Scale an image with bilinear interpolation 4.9273 0.0262 1.0000( 0.5445 0.0003  9.0496 1.0205 4.8282 0.2513 0.0038  19.6074| 2.3411 0.0295 2.1047
chunky-decode-png-image Decode a PNG image stream to pixel values 31.9720 0.3122 1.0000| 32.0908 0.3098  0.9963| 100.3601 0.3186 13.7589 0.0101 2.3237| 15.7590 0.0120  2.0288
chunky-encode-png-image Encode pixel values to a PNG image stream 48.0001 0.5826 1.0000{ 10.0598 0.0503 4.7715 21.8336 2.1985 34.8494 0.4705 1.3774| 57.5937 0.4539 0.8334
chunky-color-compose-quick Compose one colour value on top of another 20.0624 0.0049 1.0000| 1.2092 0.0017 16.5917 2.2468 8.9293| 5.2565 3.8166( 0.3366 0.0003 59.6119| 0.4796 0.0028 41.8315
chunky-color-r Extract colour channel from packed 32bit pixel value | 16.0452 0.0205 1.0000 11.2803 0.0221 1.4224| 18.1816 0.8825| 25.5462 0.6281 0.7479 0.0003 21.4537| 1.6514 0.0133  9.7164
chunky-color-g Extract colour channel from packed 32bit pixel value | 15.1524 0.0397 1.0000| 10.6781 0.0188  1.4190| 18.4940 0.8193| 25.2880 0.5992 0.7403 0.0006 20.4679| 1.6792 0.0222  9.0238
chunky-color-b Extract colour channel from packed 32bit pixel value | 15.0363 0.0445 1.0000 10.1860 0.0042 1.4762 17.7032 0.8494| 24.7702 0.6070( 0.7503 0.0051 20.0391 1.6476 0.0234  9.1265
chunky-color-a Extract colour channel from packed 32bit pixel value | 13.8268 0.0514 1.0000| 10.0445 0.0244 1.3766| 17.9353 0.7709| 24.6747 0.5604( 0.7377 0.0006 18.7418| 1.6336 0.0144  8.4640
chunky-operations-compose Compose one image on top of another 18.2619 0.0181 1.0000 0.2156 0.0000 84.7060] 0.4620 39.5269 0.2682 0.0018 68.1033' 0.2689 0.0014 67.9133
chunky-operations-replace Replace the contents of one image with another 7.5622 0.0063 1.0000( 0.1411 0.0000 53.5976 0.8628 8.7651 0.2409 0.0067 31.3914| 0.2182 0.0045 34.6492
psd-combine-rgb-channel Decode RGB channel data into pixel values 9.1537 0.0268 1.0000f 0.4760 0.0002 19.2303 0.9657 9.4787 0.2366 0.0014  38.6804| 0.5347 0.0005 17.1209
psd-combine-cmyk-channel Decode CMYK channel data into pixel values 8.7897 0.0080 1.0000f 4.2160 0.0035 2.0848| 11.3257 0.7761 0.4161 0.0030 21.1240| 0.9220 0.0153  9.5333
psd-combine-greyscale-channel Decode greyscale channel data into pixel values 3.8683 0.0014 1.0000f 2.1293 0.0003 1.8167 2.8351 1.3645 0.3079 0.0035 12.5636| 0.9681 0.0004  3.9960
psd-decode-rle-channel Decode run-length-encoded data 3.6114 0.0474 1.0000| 2.4145 0.0137 1.4957 0.5744 0.0029 6.2866( 1.7794 0.0257  2.0296
psd-parse-raw Decode raw encoded data 3.1876 0.0590 1.0000 0.5426 0.0054 5.8748 5.5173 0.5777 0.2460 0.0018 12.9551 1.3409 0.0172 2.3773
psd-color-cmyk-to-rgb Convert from CMYK to RGB 25.4834 0.0056 1.0000f 5.2850 0.0040 4.8218| 24.4951 1.0403 1.8211 0.0107 13.9934 22905 0.0221 11.1257
psd-compose-normal Compose two pixel values 9.5798 0.0017 1.0000( 0.3490 0.0024 27.4506 1.4110 6.7895| 3.1666 3.0253( 0.1370 0.0004 69.9514| 0.2765 0.0008 34.6531
psd-compose-darken Compose two pixel values using a filter 12.4882 0.0021 1.0000| 0.3358 0.0003 37.1902 1.4342 8.7074| 3.2332 3.8625 0.1408 0.0003 88.6946( 0.2770 0.0019 45.0837
psd-compose-multiply Compose two pixel values using a filter 11.3139 0.0015 1.0000 0.3530 0.0021 32.0465 1.4093 8.0278 3.2066 3.5284 0.1390 0.0015 81.4240 0.2796 0.0006 40.4717
psd-compose-color-burn Compose two pixel values using a filter 13.6794 0.0028 1.0000| 0.3846 0.0007 35.5709 1.4947 9.1519| 3.5064 3.9013( 0.1951 0.0012  70.1328| 0.3208 0.0003 42.6349
psd-compose-linear-burn Compose two pixel values using a filter 11.2797 0.0020 1.0000 0.3664 0.0011 30.7812 1.4525 7.7659 3.2223 3.5005 0.1385 0.0003 81.4716 0.2822 0.0037 39.9707
psd-compose-lighten Compose two pixel values using a filter 12,7023 0.0023 1.0000| 0.3389 0.0004 37.4836 1.4511 8.7538| 3.1088 4.0860( 0.1360 0.0017 93.3989| 0.2780 0.0027 45.6998
psd-compose-screen Compose two pixel values using a filter 11.3777 0.0011 1.0000| 0.3491 0.0012 32.5957 1.4418 7.8913|  2.9852 3.8113( 0.1344 0.0015 84.6555| 0.2761 0.0008 41.2086
psd-compose-color-dodge Compose two pixel values using a filter 15.6079 0.0031 1.0000| 0.3809 0.0007 40.9720 1.4253 10.9508( 3.0824 5.0635( 0.2448 0.0014 63.7576| 0.3856 0.0031 40.4821
psd-compose-linear-dodge Compose two pixel values using a filter 13.9772 0.0024 1.0000 0.3381 0.0012 41.3362 1.3973 10.0031 3.0626 4.5639 0.1389 0.0010 100.6281 0.2850 0.0061 49.0516
psd-compose-overlay Compose two pixel values using a filter 13.7380 0.0025 1.0000| 0.3597 0.0007 38.1892 1.4684 9.3555| 3.2616 4.2120( 0.1755 0.0013  78.2569| 0.3188 0.0040 43.0996
psd-compose-soft-light Compose two pixel values using a filter 14.0483 0.0018 1.0000| 0.3806 0.0003 36.9104 1.4558 9.6496| 3.2347 4.3431( 0.1829 0.0004 76.8086| 0.3296 0.0037 42.6223
psd-compose-hard: Compose two pixel values using a filter 13.2856 0.0020 1.0000| 0.3765 0.0002 35.2864 1.4366 9.2477|  2.8690 4.6307( 0.1725 0.0003 77.0179| 0.3191 0.0011 41.6411
psd-compose-vivid-light Compose two pixel values using a filter 15.7572  0.0020 1.0000 0.4015 0.0014 39.2481 1.4759 10.6764| 3.3599 4.6898 0.3199 0.0004 49.2566 0.4782 0.0057 32.9510
psd-compose-linear-light Compose two pixel values using a filter 15.2815 0.0031 1.0000| 0.3725 0.0002 41.0285 1.5195 10.0569 3.1666 0.0423 4.8258( 0.2426 0.0003 62.9775| 0.3796 0.0010 40.2621
psd-compose-pin-light Compose two pixel values using a filter 15.1247 0.0016 1.0000| 0.3601 0.0002 42.0034 1.4739 10.2616( 3.1750 0.0439 4.7636| 0.1800 0.0026 84.0026| 0.3203 0.0003 47.2277
psd-compose-hard-m Compose two pixel values using a filter 11.2739 0.0022 1.0000| 0.3966 0.0012 28.4271 1.5099 7.4667| 3.1402 0.0598 3.5902| 0.1426 0.0003  79.0594 0.2816 0.0033 40.0422
psd-compose-difference Compose two pixel values using a filter 11.0951 0.0025 1.0000 0.3424 0.0001 32.4050] 1.4161 7.8352 29586 0.0324 3.7501 0.1372  0.0003 80.8976 0.2759 0.0019 40.2215
psd-compose-exclusion Compose two pixel values using a filter 14.0561 0.0016 1.0000 0.3503 0.0007 40.1213 1.4592 9.6328 3.0012 0.0400 4.6836 0.1383 0.0003 101.6350 0.2833 0.0038 49.6157
psd-clippingmask-apply Apply a clipping mask to an image 6.5653 0.0031 1.0000 0.2642 0.0004 24.8485 0.5486 11.9680] 0.1169 0.0002 56.1856 0.7980 0.0003 8.2272
psd-mask-apply Apply an image mask to an image 10.3243 0.0192 1.0000| 1.7499 0.0016  5.9001 failed 0.2582 0.0033  39.9857| 0.9720 0.0214 10.6212
psd-blender-compose Blends two images using one of the compose modes | 12.7997 0.0762 1.0000| 18.6183 0.0019  0.6875 failed 0.9081 0.0040 14.0959| 1.3786 0.0199  9.2849
psd-util-clamp Return a value or minimum or maximum bounds 27.3576 0.0123 1.0000| 10.6073 0.0248  2.5791| 20.0002 0.0430 1.3679| 25.8236 0.2004 1.0594| 2.5784 0.0043 10.6105| 2.6979 0.0228 10.1401
psd-util-pad2 Round an integer to a multiple of 2 14.4757 0.0443 1.0000| 9.7852 0.0098 1.4793 17.8647 0.0140 0.8103| 22.6366 0.1362 0.6395 0.8032 0.0004 18.0237 1.6267 0.0141 8.8991
psd-util-pad4 Round an integer to a multiple of 4 15.1029 0.0098 1.0000| 10.2633 0.0067  1.4715| 17.8847 0.0408 0.8445| 23.9633 0.1667 0.6303| 0.8314 0.0005 18.1656| 1.6326 0.0085  9.2508
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current poor support for C extensions is often described as a lim-
iting factor in high performance re-implementations of languages.
In contrast, Unipycation is a novel combination with no immediate
industrial application. Unipycation composes Python and Prolog
by combining their interpreters using glue code (which is specific
to Python and Prolog) and compiles code using a meta-tracing JIT
compiler. In contrast, we do not write glue code for a specific pair of
interpreters but rather create this glue code at runtime for any pair
of interpreters. We allow foreign objects to be used from any lan-
guage. When accessed for the first time, these objects dynamically
generate foreign-language-specific IR (compiler intermediate rep-
resentation) and embed it into the IR of the host application. Since
the IR nodes themselves implement interpretation we can combine
IR nodes of different origin without needing glue code. As in our
approach, Unipycation maps foreign primitive values to primitive
host values. However, Unipycation wraps non-primitive objects us-
ing adapters when passing them to a foreign language, while we
allow foreign objects to be accessed directly by creating language-
specific access IR at run time.

6.2 Common Language Infrastructure

The Microsoft Common Language Infrastructure (CLI) supports
writing language implementations that compile different languages
to a common IR and execute it on top of the Common Language
Runtime (CLR) [28]. The Common Language Specification (CLS),
as part of the CLI (specified in ECMA-355 [4]), describes a cross-
language interoperability mechanism for these language implemen-
tations. The CLS describes how language implementations can ex-
change objects across different languages. This standard defines a
fixed set of data types and operations that all language implemen-
tations have to use. CLS-compliant language implementations gen-
erate metadata to describe user-defined types. This metadata con-
tains enough information to enable cross-language operations and
foreign object accesses. Also, the CLS specifies a set of basic lan-
guage features that every implementation has to provide and there-
fore developers can rely on their availability in a wide variety of
languages. This approach is different from ours because it forces
CLS-compliant languages to use the same object model. Our ap-
proach, on the other hand, allows every language to have its own
object model. Object accesses are dynamically generated using the
object model of the foreign language. Therefore we believe that our
approach is more flexible.

6.3 Interface Description Language

Interface Description Languages (IDLs) are also widely used to
implement cross-language interoperability. To compose software
components, written in different languages, programmers use an
IDL to describe the interface of each component. Such IDL inter-
faces are then compiled to stubs in the host language and in the
foreign language. Cross-language communication is done via these
stubs [13, 15, 34]. However, an IDL is much more heavyweight. It
is mainly targeted to remote procedure calls and often not only aims
at bridging different languages but also at calling code on remote
computers. Our approach is different because we neither require
new interfaces nor a mapping between languages. Foreign objects
can be accessed via messages without needing any boilerplate code
that converts or marshals an object. Also, we target languages run-
ning on the same VM and thus use a more lightweight approach.

6.4 Language-neutral Object Model

Another approach towards cross-language interoperability are
language-neutral object models. Wegiel and Krintz [40] propose
a language-neutral object model, which allows different program-
ming languages to exchange runtime data. In their system, the
language-neutral objects are stored on an independent shared

heap. Each language implementation then transparently translates
a shared object to a private object. All VMs map their shared mem-
ory segments to the same virtual address and use shared objects
directly via pointers. We argue that sharing objects between differ-
ent languages and VMs does not require a special object model.
Instead, objects should be shared between languages directly. Also,
a shared object model would not solve the performance problems
that Ruby engines, other than MRI, have when running C exten-
sions. A shared object model also does not bridge the language gap
that prevents a JIT compiler from widening its compilation span
across different languages using inlining. Interpreters of different
languages can exchange runtime data via a shared object model,
however, invocations across languages are compilation barriers
that prevent inlining. Our approach of using message resolution
completely obliterates the language boundaries and allows inlining
across different languages.

6.5 Foreign Function Interfaces

Low-level APIs allow developers to integrate C code into another
high-level language. Java developers can use a wide variety of
different FFIs to integrate C code into Java, for example the Java
Native Interface [27], Java Native Access [8], or the Compiled
Native Interface [5]. VM engineers that implement new interpreters
for dynamic languages in Java, e.g. the original JRuby without
Truffle, could use these FFIs to support C extensions. However,
the experience of JRuby, described below, shows that this approach
is cumbersome and also has limited performance.

Rather than accessing precompiled C extensions via FFIs we
follow a completely different approach. We use TruffleC to run
these C extensions within a Truffle interpreter and use an effi-
cient cross-language mechanism to compose the JRuby+Truffle
and TruffleC interpreter. Our approach hoists optimizations such
as cross-language inlining and performs extremely well compared
to existing solutions.

It is also possible to implement an FFI in the dynamic language
so that it can interface directly with C code. However, as we de-
scribed in the introduction this approach is simply not tractable due
to the large volume of existing code using the current API. It also
does nothing to allow the compiler to optimize through to the native
code.

6.6 Ruby C Extensions

In Section 5.3 we briefly described how other Ruby implementa-
tions support C extensions.

MRI should have very straightforward support for C extensions
as its implementation defines the API. However this does not mean
that it poses no problems for MRI. As the interface is well estab-
lished, MRI is now bound by it as much as any other implementa-
tion. It might be more correct to say that the C extension is MRI as
it was when it became widely used. MRI is now not free to change
the API, and this means that it also not free to alter their implemen-
tation.

Rubinius supports C extensions through a compatibility layer.
This means that in addition to problems that MRI has with meet-
ing a fixed API, Rubinius must also add another layer that converts
routines from the MRI API to calls on Rubinius’ C++ implementa-
tion objects. The mechanism Rubinius uses to optimize Ruby code,
an LLVM-based JIT compiler, cannot optimize through the initial
native call to the conversion layer. At this point many other useful
optimizations no longer can be applied. Despite having a signifi-
cantly more advanced implementation than MRI, it runs C exten-
sions about half as fast as MRI (see Section 5).

JRuby uses the JVM’s FFI mechanism, JNI, to call C exten-
sions. This technique is almost the same as used in Rubinius, also
using a conversion layer, except that now the interface between the



VM and the conversion layer is even more complex. For exam-
ple, the Ruby C API makes it possible to take the pointer to the
character array representing a string. MRI and Rubinius are able to
directly return the actual pointer, but in JRuby using JNI it is not
possible to obtain the address of the character array in a string. In
order to implement this routine, JRuby must copy the string data
from the JVM onto the native heap. When the native string data is
then modified, JRuby must copy it back into the JVM. To keep both
sides of the divide synchronized, JRuby must keep performing this
copy each time the interface is passed. We believe that this is the
cause for the benchmarks timing out in JRuby.

7. Future Work

There are several issues that remain to be tackled, and opportunities
for further research:

Completeness We are currently working on completeness of
JRuby+Truffle and TruffleC. Both interpreters do not yet fully
support all language features. For example, JRuby+Truffle has
limited support for the core library and does not support classes
such as the File class, the Time class, or the Socket class.
These classes are not critical for performance. TruffleC cur-
rently does not support multi-threaded programs and also has
only limited support for GNU C extensions [11]. In case pro-
grammers use these unsupported features, we report a runtime
error. In future work we will address these completeness issues
and will therefore be able to support more Ruby gems that use
C extensions.

Threading Ruby is a multi-threaded language with both native
threads scheduled by the operating system and lightweight
threads called fibers, scheduled by the runtime. MRI has a
global interpreter lock which prevents parallel execution of
multiple threads, which simplifies C extensions as they do
not have to deal with parallel updates to runtime data struc-
tures. However, on a modern multi-core system this approach
severely limits the proportion of available processing power
that it utilized. Alternative implementations of MRI’s API ei-
ther have to also adopt a global interpreter lock, or provide a
more fine-grained mechanism. Research into parallelizing Truf-
fle languages and providing support for languages such as Ruby
and C is ongoing.

Multi-tenant runtimes JRuby supports multiple isolated Ruby
programs running in the same instance of a JVM. This is used
for various purposes, such as improving startup performance
by running subsequent programs in an already running JVM, or
to amortize the JVM overhead of many small applications. Our
current implementation has a global state in the native heap,
which would need to be isolated for each runtime.

8. Conclusions

We have presented a new approach to composing implementations
of different language interpreters as modules and hosted in a shared
underlying VM. The cross-language mechanism composes inter-
preters without additional infrastructure or glue code. We introduce
an interface for shareable objects, which allows different language
implementations to exchange objects. Language implementations
access shared objects via object- and language-independent mes-
sages. Our resolving approach transforms these messages to an
object- and language-specific access at runtime. The mechanism
therefore refrains from converting objects, instead we adapt the IR
of a program to deal with the foreign objects. The resolved IR of
a program completely obliterates the language boundaries, which
enables a JIT compiler to perform its optimizations across any lan-
guage boundaries.

We use our mechanism to compose the JRuby+Truffle inter-
preter and the TruffleC interpreter to support C extensions for Ruby.
TruffleC substitutes invocations of Ruby API functions and uses
our cross-language mechanism for accessing Ruby objects instead.
Our system is therefore compatible with MRI’s Ruby API and can
execute real-world applications.

Our evaluation demonstrates that this novel approach of com-
posing languages and their interpreters exhibits excellent perfor-
mance. Our cross-language mechanism makes language borders
between Ruby an C completely transparent. The JIT compiler can
inline C functions into Ruby and vice versa and therefore enables
optimizations across language boundaries. The peak performance
of our system is over 3 faster compared to Ruby MRI when run-
ning benchmarks which stress interoperability between Ruby code
and C extensions.
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