AST Specialisation and Partial Evaluation
for Easy High-Performance Metaprogramming

Chris Seaton

Oracle Labs
chris.seaton@oracle.com

Abstract

The Ruby programming language has extensive metapro-
gramming functionality. Unlike most similar languages, the
use of these features is idiomatic and much of the Ruby
ecosystem uses metaprogramming operations in the inner
loops of libraries and applications.

The foundational techniques to make most of these
metaprogramming operations efficient have been known
since the work on Smalltalk and Self, but their implementa-
tion in practice is difficult enough that they are not widely
applied in existing implementations of Ruby and other sim-
ilar languages.

The Truffle framework for writing self-specialising AST
interpreters, and the Graal dynamic compiler have been de-
signed to make it easy to develop high-performance imple-
mentations of languages. We have found that the tools they
provide also make it dramatically easier to implement effi-
cient metaprogramming. In this paper we present metapro-
gramming patterns from Ruby, show that with Truffle and
Graal their implementation can be easy, concise, elegant and
highly performant, and highlight the key tools that were
needed from them.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Run-time environments

Keywords Virtual Machines, Interpreters, Truffle, Graal,
Ruby, Java

1. Introduction

Ruby is an imperative, object oriented, dynamically typed
programming language with late-bound dispatch. It has sim-
ilarities to languages such as Smalltalk and Python. Ruby
has extensive metaprogramming functionality that allows
parts of program execution to be controlled and observed us-
ing runtime data rather than data fixed in the source program.
Examples include making method calls using a name that is
a dynamic value, proxying method calls, dynamic code eval-

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0).

Meta’16 October 30, 2016, Amsterdam, Netherlands
Copyright (© 2016 held by owner/author(s).

uation, and access to instance variables and method activa-
tion frames.

Many languages include some of this metaprogramming
functionality, but a key difference in the Ruby programming
language is cultural. While other programming languages
tend to discourage use of metaprogramming, Ruby embraces
it. Many examples can be found of metaprogramming use in
Ruby code that is part of an application’s inner loop, rather
than just in offline operations such as set up and testing.

JRuby+Truffle (Seaton 2015) is a new implementation of
Ruby using the Truffle (Wiirthinger et al. 2013b) framework
for self-optimising AST interpreters, and Graal (Wiirthinger
etal. 2013a), a dynamic compiler that can be used to compile
Truffle’s ASTs using partial evaluation. In JRuby+Truffle
we have developed techniques to make metaprogramming
patterns found in Ruby efficient (Seaton 2015; Marr et al.
2015; Seaton et al. 2014; Daloze et al. 2015). The techniques
needed for that are in many cases incremental developments
on techniques already used for conventional program opera-
tions, but we will suggest that in practice they become dif-
ficult enough to implement that they are left unoptimised,
and that there is a small set of key tools that Truffle and
Graal provide that make it much easier to implement effi-
cient metaprogramming.

We are implementing Ruby’s metaprogramming func-
tionality in this paper, but many of the methods described are
available in other languages such as Python and JavaScript.

1.1 Contributions

Previous publications have described in depth some aspects
of implementing metaprogramming functionality in Ruby
and other languages implemented using Truffle and Graal.
This paper provides a survey of how all the major metapro-
gramming functionality of Ruby has been implemented,
including both concise descriptions of techniques already
presented in other publications, and techniques not yet de-
scribed in the literature.
This paper makes the following research contributions:

e Identification of typical Ruby metaprogramming func-
tionality and the patterns in which they are used.

http://creativecommons.org/licenses/by-nd/4.0/

e A survey of existing published techniques for implement-
ing this functionality.

e Techniques not previously described for the implementa-
tion of dynamic code evaluation and meta-access to in-
stance variables.

e Identification of the small set of tools that Truffle and
Graal provide that are useful for the efficient implemen-
tation of metaprogramming.

2. Ruby Metaprogramming Patterns
2.1 Idiomatic Ruby

We surveyed Ruby code in the standard library and in li-
braries important to the Ruby ecosystem to find examples of
metaprogramming patterns where performance may be im-
portant.

We mention three libraries below. Active Support is part
of the Rails web framework stack and provides utility meth-
ods for data structures, handling dates and times and so on.
Chunky PNG is a library for reading and writing PNG image
files. PSD.rb is a library for reading and writing Photoshop
image files. Sidekiq is a library for enqueueing and process-
ing background tasks.

Code samples that follow have in some cases been sim-
plified for clarity and space.

The advisability of using these patterns when writing
Ruby programs is irrelevant to a discussion of how to ef-
ficiently implement them. It could be argued that in some
cases they are less safe, but more compact and less repetitive
than the alternatives. Another valid criticism of the patterns
is their low performance in existing Ruby implementations.
The techniques described in this paper reduce that problem.

2.2 Dynamic method sends

In Ruby method calls, also called message sends as in the
Smalltalk tradition, are usually made using a name written
as a literal in the program source code. It is also possible to
call a method based on a name that is a dynamic value in the
running program, using the #send meta-method.

object.method_name(argl, arg2, ...)
object.send(’method_name’, argl, arg2, ...)

Dynamic method sends are used to vary the method be-
ing called based on some condition. This can be used to
separate the two concerns of deciding which method to
call, from providing the arguments and making the call. In
this example from Active Support’s Range class, either the
less-than or less-than-or-equal-to are used depending on the
exclude_end? property of the range.

operator = exclude_end? 7 :< : :<=
value.send(operator, last)

In that case the names appear as literals as in the source
code and are selected between based on control flow. In more

complex cases the method name can be dynamically gener-
ated. In this example from Chunky PNG there are multiple
methods for decoding pixel data in an image depending on
the bit depth. The string used in the send uses the #{} syntax
to interpolate the bit depth into the method name.

send("decode_png_resample_#{bit_depth/bit_value")

2.3 Dynamic method proxies

Dynamic method sends allow the program to control which
method is called at runtime. Ruby also allows the program to
dynamically control what happens when a method is called.
The #method missing method is called when a method
is called that does not exist. The program can then call a
different method, or perform any other action, in response,
forming a kind of dynamic method proxy.

In this example, the Active Support Duration class en-
capsulates an existing time value and provides new meth-
ods such as converting it to JSON format. In order to
provide all the existing methods of a time object, it uses
#method missing to handle calls made to methods not ex-
plicitly defined and forwards them, using a dynamic #send
to the encapsulated value. The *args syntax is Ruby’s form
of variadic arguments.
def method_missing(method, *args)

@encapsulated_value.send(method, *args)
end

In this example from PSD.rb a method proxy is used to
implement a form of module importing. The importing mod-
ule defines #method missing to look for methods in the
Color module if it does not have definitions for them. As
well as a dynamic send it also uses #respond_to? which in-
dicates ahead of time whether a module has a given method.
def method_missing(name, *args)

if .respond_to?(name)

return .send(name, *args)

end
end

2.4 Dynamic code evaluation

Ruby includes an #eval method to evaluate a dynamic
string value as Ruby program source code at runtime.

Many Ruby applications are web servers and generate
HTML pages as output through a template mechanism. The
standard template library erb compiles templates to Ruby
code that concatenates strings with runtime data in variables.
To apply the template for each page the generated Ruby code
is run with #eval and the runtime variables passed as an
environment object.

eval (generated_template, variables)

2.5 Dynamic instance variable access

In the same way as Ruby allows a method to be called with a
name that is a dynamic value, it is possible to read and write
instance variables (fields) in objects using a dynamic value

as a name. In Ruby, instance variables are normally fully
encapsulated, so the metaprogramming approach is the only
way to read instance variables from outside of an object.

object.instance_variable_get(’Qvariable_name’)

object.instance_variable_set(’Q@variable_name’, value)

The standard library Set class uses dynamic access to in-
stance variables to access implementation fields of other ob-
jects in basic operations such as equality. In this example the
internal Hash (hash map) object in the set being compared
for equality is accessed using #instance_variable_get.
def eql?(other)

Ohash.eql?(other.instance_variable_get (:@hash))
end

2.6 Dynamic frame access

Ruby allows access to materialised method activation frames,
known as Binding objects. Local variables captured in a
Binding can be read and written, and the object can be used
as a context in which to execute code, including dynamic
code using the #eval method.

The erb templating library uses the binding of the current
method in order to set values for variables in templates. The
#binding method reifies the current lexical environment as
a binding, which is passed into the method to render the
template.

page_title = ’Home Page’
template.render (binding)

The use of the #binding method here gives a static indi-
cation that the lexical environment is needed as an object, but
it is also possible to access an activation frame without any
form of ‘prior warning’, by calling the #binding method on
a closure which has captured it.

a= ...
closure = proc { }

closure.binding.local_variable_get(’a’)

This use case is interesting because it means that it can-
not be statically determined that the binding object will be
needed ahead of time, and the local variable a needs to be
made available for all environments.

2.7 Dynamic object graph access

Ruby allows a running program to access all live objects
in the object graph by calling ObjectSpace.each_object
and passing it a callback. Sidekiq uses each_object to find
all open file objects and to reopen them as part of rotating
log files.

.each_object() do |filel

reopen file
end

All live objects in the program are returned by this
method, whether they are accessible from global variables,

current activation frames, frames only accessible via the
binding mechanism as described above, or transitively from
those roots.

2.8 Tracing

Ruby includes several interfaces for observing and in-
tercepting a running program through tracing execution.
#set_trace_func allows a method to be installed that is
called for meta-events such as method entry, the program
reaching new source code lines, and runtime calls.

Tracing is commonly used to implement debugging, as
in the basic debug standard library module, and histori-
cally was used to collect information to report code cover-
age while running tests, although this functionality is now
provided by a native code extension to the standard Ruby
implementation to increase performance.

set_trace_func proc { |event, file, line,
id, binding, classname]
puts "We’re at line number

}

line/!"

With both dynamic access to the object graph and tracing
we were not able to find any evidence of people using tracing
in production in the inner loop of compute intensive code.
However it is always possible to use both features, so we
could say that any implementation of Ruby is always con-
strained by having to be able to turn it on when needed.

3. Implementations of Ruby

The original and most commonly used implementation of
Ruby is known as MRI. It is a bytecode interpreter written
using C.

Two major alternative implementations of Ruby exist.
Rubinius is a bytecode interpreter with a JIT — both writ-
ten in C++ — and an additional layer that implements much
of the core Ruby library in Ruby itself. JRuby runs on the
JVM and implements Ruby using Java, emitting JVM byte-
code for Ruby methods that are run repeatedly. JRuby was
one of the motivating applications for the invokedynamic
JVM bytecode instruction and associated utilities which
have made it easier to implement techniques such as inline
caching (described later) on the JVM.

This paper focuses on the implementation of JRuby+Truffle,
a new implementation of Ruby based on code from both
JRuby and Rubinius. JRuby+Truffle runs on the JVM, but
instead of generating bytecode at runtime as JRuby does, it
uses the Truffle framework to implement a self-optimising
AST interpreter (described later) and the Graal dynamic
compiler (also described later) to partially evaluate the AST
to produce efficient machine code.

The Ruby language supports concurrent threads, but in
MRI these are run with a global interpreter lock so that
threads are never running in parallel. Rubinius, JRuby, and
JRuby+Truffle all support parallel execution of threads with
no global lock. Concurrent threads can complicate the im-

plementation of some metaprogramming functionality, and
parallel threads even more so.

4. Foundational Techniques

In this section we describe some of the foundational tech-
niques needed to understand our discussion of the efficient
implementation of metaprogramming functionality.

4.1 Inline caching

In languages with some degree of late bound dispatch, the
method that is actually called for a given name may depend
on the class of the receiver. Determining the method to call
may also involve a complex lookup operation that walks the
class hierarchy.

To make these method calls more efficient it is possible
to cache the method that will be called for a given receiver.
If this cache is associated with a particular source location
or bytecode instruction it is called an inline cache (Deutsch
and Schiffman 1984). An inline cache that caches multiple
receiver and method pairs rather than just one is a polymor-
phic inline cache (Holzle et al. 1991).

4.2 Truffle - self-specialising AST interpreters

An abstract syntax tree is a tree representation of a program.
An AST interpreter executes a program by recursively walk-
ing its AST. AST interpreters are usually thought of as slow.
For example, MRI was initially an AST interpreter before
a bytecode format was later introduced to improve perfor-
mance.

Truffle is a framework for writing AST interpreters that
increase their performance by replacing nodes with more
specialized versions based on profiling information such as
the actual types seen in a program. A simple example is
a Truffle AST node for a type-generic add operation that
optimises to one that performs simple integer arithmetic if
integers are the only observed types. A guard, which is just
a conditional statement, will usually be added to check that
the condition on which we based our specialization is still
valid each time the node is executed.

4.3 Dynamic optimization and deoptimization

The performance of interpreters, even those that use sophis-
ticated bytecode dispatch loops or self-specialization and
inline caching, are often very limited. Dynamic optimiza-
tion (Deutsch and Schiffman 1984), or JIT compilation, can
translate a program to machine code at run time. Hopefully
this will reduce the overhead of the interpreter loop, and it
provides opportunities to optimise and simplify code.
Dynamic deoptimization (Holzle et al. 1992) is the coun-
terpoint to optimization. A language implementation with
dynamic deotpimisation can jump from optimised compiled
code back into the unoptimised interpreter. Consequently,
the compiler can perform more aggressive speculative op-
timizations (Duboscq et al. 2013) and avoid compiling any

code for not-yet-seen or slow-path cases because it can al-
ways fall back to the interpreter.

4.4 Graal - partial evaluation

Truffle’s dynamic optimization is implemented by the Graal
compiler. Graal uses partial evaluation to compile a Truffle
AST which has reached a stable state to machine code.
Partial evaluation has a specific technical meaning, but it can
be more simply described as aggressive inlining and constant
folding.

5. Implementation
5.1 Dynamic method sends

An efficient implementation of dynamic method sends in
Ruby has been previously described by Marr et al. (2015) as
dispatch chains. A conventional polymorphic inline cache
is designed to handle a single method name, but multiple
classes of receiver object. Each time the cache is used the
actual receiver is searched for in the cache and the method
which was cached against that class is run. Dispatch chains
generalise this single dimension (in the receiver class) data
structure, to two dimensions by adding the method name.
Now the cache maps tuples of method names and receiver
classes to methods, allowing the method name to vary in the
same way that the receiver does.

In JRuby+Truffle we implement #send using such a dis-
patch chain. In fact, we implement all method calls as dis-
patch chains, and rely on Graal’s partial evaluation to auto-
matically remove the extra degree of freedom that in most
cases is not needed. In the case of #send, which often varies
in method name but not receiver class, we can apply the same
technique to eliminate the receiver class from the cache key.

5.2 Dynamic method proxies

The efficient implementation of method proxies in Ruby
was also previously described by Marr et al. (2015), us-
ing a modification of their dispatch chain technique. In dis-
patch chains, a cache maps a tuple of method name and
receiver class to the method handle that will be called. To
support #method missing, we augment the range of the
cache to indicate whether #method missing will be called.
Such a modification is necessary to support both normal
methods and #method missing calls as #method missing
calls require special argument handling (the first argument is
the target method name followed by the arguments for that
method).

5.3 Dynamic code evaluation

In other implementations of Ruby the #eval method parses
the supplied Ruby code from scratch on each invocation be-
fore executing it. We applied the original inline caching hy-
pothesis to this problem, and reasoned that strings passed
to #eval are potentially stable. We built a specialized poly-
morphic inline cache that maps from source code strings to

versions of this code that have already been parsed and com-
piled to Truffle AST methods. The source code is treated in
the same way as the method name.

5.4 Dynamic instance variable access

JRuby+Truffle implements object instance variables using
a sophisticated object storage model (W68 et al. 2014).
Ruby is a class-based object oriented language but because

metaprogramming functionality like #instance_variable_set

can create new instance variables, the class of an object is
not a reliable way to determine what instance variables it
has. Instead, we actually discard all static class hierarchy
information and rely on recreating the actual structure of
objects through a graph of hidden classes and transitions be-
tween them as new instance variables are added to existing
objects.

Again, this is a problem of mapping dynamic names into
another value, which here is the location of the instance vari-
ables storage in an object. We solve the problem using yet
another form of dispatch chains. In this case, the flexibil-
ity of the hidden class system we are using means that for
a given instance variable name the location at which it is
stored in objects can vary even if they have the same class,
so the domain for this cache is the hidden class, or shape, of
the object, not its logical Ruby class.

5.5 Dynamic frame access

In MRI method activation frames are heap-allocated objects
that form a stack parallel to the actual machine stack which
runs the interpreter. Alternative implementations of Ruby
such as JRuby have attempted to put Ruby local variables
onto the machine stack (or the host virtual machine stack,
which normally re-uses the machine stack). However this
process, already requiring additional work to implement, is
deeply complicated by the multiple ways to obtain activa-
tion frames as objects (described in Section 2), and by the
limitation of the JVM that it is not possible to read virtual
machine local variables from outside their scope. Such fac-
tors mean that in many cases it cannot be determined that
local variables will never be accessed via metaprogramming
and subsequently it cannot be determined that it is safe to
store them on the virtual machine stack.

Using the Truffle framework, JRuby+Truffle exclusively
uses heap objects to store method activation frames, and
does not attempt to manually store local variables on the
stack. This means that activation frames are always available
to be accessed as a Ruby Binding object, because they are
already heap allocated objects. Graal then performs the job
of storing the contents of the activation frame objects on the
machine stack where possible, through sophisticated partial
escape analysis (Stadler 2014). This process can be specula-
tive and optimistic, being applied even when it is not certain
that the activation frame will never be used as a binding,
because through deoptimization Graal can re-materialise the
activation frame as a heap object when required.

5.6 Dynamic object graph access

To provide a list of all live objects we must be able to ac-
cess all the locations where objects could be stored. The ob-
ject storage model as described earlier allows us to examine
an object to find all other objects it references. Likewise,
global variables and other such simple program state is easy
to traverse. The final place where objects can be referenced
from is the program stack and method activation frames. As
previously described, in JRuby+Truffle these are conceptu-
ally heap allocated objects. Truffle provides an API which
allows the current stack of activation frame objects to be it-
erated, deoptimising and re-materialising them if they were
previously optimised away.

The task is complicated because in implementations of
Ruby with concurrent threads there may be multiple call
stacks which need to be visited to find roots, and multiple
mutators modifying the graph as it is visited. If the threads
are parallel then some kind of pre-emption is needed to
interrupt them from the thread wanting to visit their stacks.

Daloze et al. (2015) describe guest-language safepoints
as a tool to solve these two problems. The technique con-
ceptually allows one thread to synchronously pause all other
threads and to execute some arbitrary semantic action, pro-
vided by the initiating thread as a Java lambda.

This solves the problem of needing to visit another
thread’s call stack because the lambda sent to all other
threads can be the same code to iterate stack frames as was
used by the initiating thread in the single-threaded case. The
lambda is executed by the other threads in their own call
stack as if the action were a normal part of their program, so
when the same lambda is executed on each thread it sees the
stack of that thread.

The technique also solves the second problem of needing
to pause the program to prevent the object graph from con-
tinuing to be modified as live objects are collected, because
threads can be made to wait at a barrier until they have all
finished before they continue to execute user code.

5.7 Tracing

An efficient implementation of tracing in Ruby has been
previously described by Seaton et al. (2014), re-using the
self-specialization and deoptimization capabilities in Truffle
and Graal.

To support tracing, the JRuby+Truffle AST includes
nodes in each location where a tracing event could be raised,
such as method entry, moving from one source line to an-
other, runtime calls and so on. When an AST for a method
is first generated, these nodes are in an inactive state and do
nothing. To enable tracing, the trace nodes are replaced with
active nodes, that call the installed trace method.

The principle in Truffle is that trees are self-specialising,
rather than being specialized from afar, as this is a simpler
model to understand. Therefore trace nodes are activated
lazily, replacing themselves with active versions the first

time they are used. Trace nodes can monitor for the need
to replace themselves using the Assumption class provided
by Truffle. Assumption objects represent a flag that can be
set to indicate some action should be performed, but they
integrate with the deoptimization mechanism in Graal so
that in optimised code no check of the flag needs to be
made. Instead, when the flag is set optimised code that would
have checked the flag is deoptimised, storing the explicit flag
check.

If the installed trace method is later removed, trace nodes
can again replace themselves with inactive versions and re-
store the original behaviour and performance.

5.8 Storing state in Truffle

Five of the seven techniques that we have described need to
store state in some sense. Inline caches need to be located
somewhere alongside the program code that they support.
In custom interpreters such as MRI this requires specialized
bytecode instruction formats, but in JRuby which runs on the
JVM they cannot define their own bytecode.

Truffle solves this problem by giving you consistent and
universal access to a place to store state. A Truffle program
is made up from a tree of nodes. Each node is a Java object
that can contain mutable fields, and Truffle interpreters like
JRuby+Truffle can store arbirary state in these fields.

5.9 Implementing caches in Truffle

Four of the seven techniques that we have described use
sophisticated versions of multi-dimension inline caching
mechanisms to efficiently implement metaprogramming
functionality. While it would be possible to build these
caches in many language implementation systems, we know
from experience that it is usually prohibitively difficult.
This example shows an approximation' of the code for
caching metaprogramming access to an instance variable
via #instance_variable_get, using the DSL that Truffle
provides (Humer et al. 2014). Our subclass of node has a
method which performs the semantic action of the node,
taking as parameters the receiver object and the dynamic
name value. We use an object model with hidden classes so
we need to map the name to a location within the current
shape (layout) of the object (WoB et al. 2014). We add three
synthetic parameters that are annotated with @Cached and
an expression that fills the cache on first use. These are
caches for the name, the shape of the object, and the location
that results from combining these. The @Specialization
annotation on the execute method then includes code for
guards that must hold before the cached parameters can be
used. In this case we check that the shape of the object is
as expected, and that the name is as expected. If these are

! The real implementation separates the two tasks of caching the instance
variable name, and caching the location of the instance variable of that
name in the object, into two separate nodes. This is because only the latter
functionality is needed when the name is written statically in the source
code.

true then we can use the cached location of the storage in the
object.

class InstanceVariableGetNode extends Node {
@Specialization(guards={
"obj.getShape() == shape",
"name . equals(cachedName)"
1))
public Object executeGet(
DynamicObject obj,
String name,
@Cached("name") String cachedName,
@Cached("obj.getShape()") Shape cachedShape,
@Cached ("cachedShape.getLoc (name)")
Location cachedLoc) {
return obj.getValueAt (cachedLoc) ;

Caches for other metaprogramming functionality are con-
ceptually similar. For example the cache for #eval caches
and then guards on the source code text, and caches the com-
piled source code.

Truffle will automatically chain a sensible number of
these caching execute methods together to create a polymor-
phic inline cache, and will also automatically fallback to a
megamorphic case if the case becomes too large. The fall-
back implementation performs the same actions as a cache
miss but does not add a new entry to the chain. In this case
our cache varies in two dimensions—the name and the re-
ceiver object’s shape—so this is already a more sophisticated
cache than found in existing implementations of Ruby, even
in these few lines.

Cache entries can be removed when they are no longer
applicable, for example if a cached method is overriden, by
linking to caches from the methods that they reference.

5.10 Avoiding megamorphisation

Most of the techniques we have described are vulnerable to
a problem which we will call megamorphisation. We have
described how we can implement #send using a dispatch
chain, but if we use a single dispatch chain for dynamic
sends for an entire program the size of the chain will likely
become very long. A long dispatch chain is a not a useful
one, as looking up methods in the chain becomes time con-
suming and the code involved in implementing it becomes
large. Also, we hope that in ideal cases where a dynamic
send is in practice static with just one or two method names
that we can produce code similar or identical to a conven-
tional method call.

At some point creating longer and longer chains does not
make sense, and no more entries are added. Accesses to the
chain which miss will perform a full slow-path lookup. We
say that the dispatch chain has become megamorphic. How
do we prevent the dispatch chains for #send, #eval and
#instance_variable_get from becoming megamorphic?

Truffle will split, or create multiple copies of, a method
that contains megamorphic code. In the case of a method like
#send, Truffle will in-practice create a separate copy of the

method for every location that calls it, so that the caches can
work independently. This is an automatic feature of Truffle,
which knows about the size of caches and the degree of
megamorphism in trees.

The splitting process is also nestable. If a method calls
another method, which then calls #send, it is possible to
split the call to #send, and then if that intermediate method
is still used by multiple locations with different method
names, to further split it to its multiple call sites.

In many cases, this will actually give you not just one
instance of the #send dispatch chain for the whole applica-
tion, and not just one for every location which calls #send,
but actually for every location which leads to a call to it with
a stable method name (if the name is ever stable).

6. Evaluation

Prior publications (Seaton 2015; Marr et al. 2015; Seaton
et al. 2014; Daloze et al. 2015) have already evaluated the
performance of the metaprogramming implementation tech-
niques that they introduced. In this section we give a repre-
sentative evaluation of one of the new techniques we have
presented here: dynamic instance variable access.

6.1 Methodology

We evaluated the version of JRuby+Truffle that is distributed
as part of GraalVM 0.15, JRuby 9.1.2.0, Rubinius 2.11 (later
versions have had the JIT removed for maintenance rea-
sons), and MRI 2.3.1. We also tried disabling the metapro-
gramming instance variable cache in the same version of
JRuby+Truffle, so that we could compare against exactly the
same implementation, just without the cache.

We ran benchmarks using the standard Ruby benchmark-
ips tool, warming up for 2 seconds, and then measuring for 5,
running 3 iterations in total. Error bars show =+ one standard
deviation.

All experiments were run on a system with 2 Intel Xeon
E5345 processors with 4 cores each at 2.33 GHz and 64
GB of RAM. We used 64bit Ubuntu Linux 13.04, using
system default compilers. JRuby was run using Oracle JDK
1.8.0_102.

6.2 Dynamic instance variable access

To evaluate dynamic instance variable access we used the
already present example of Set#eql?, which uses metapro-
gramming to read an implementation field of a Set object
being compared against for equality. First of all we evalu-
ated the performance of the metaprogramming access to the
instance variable compared to a conventional access to the
same instance variable. Figure 1 shows how far the perfor-
mance of the metaprogramming operation matches the con-
ventional operation. In all cases except JRuby+Truffle, per-
formance of the metaprogramming operation is around 80%
of the conventional operation.

This showed that in JRuby+Truffle the metaprogram-
ming operation is the same performance (within the mar-

Relative Performance (s/s)
IS)
@

0.8
04
0.2

RI JRuby+Truffle JRuby+Truffle JRuby Rubinius
(no cache)

Figure 1. Relative performance of metaprogramming access to
instance variables relative to conventional access

50
40
30
20
10

MRI JRuby+Truffle JRuby+Truffle JRuby Rubinius
(no cache)

Slowdown Relative to
JRuby+Truffle (s/s)

Figure 2. Slowdown of metaprogramming access to instance
variables relative to JRuby+Truffle

- N N
« o «

JRuby+Trufle (s/s)
=
)

Slowdown Relative to

«

MRI JRuby+Truffle JRuby+Truffle JRuby Rubinius
(no cache)

<)

Figure 3. Slowdown of Set#eql? relative to JRuby+Truffle

gin of error) as the conventional operation. However, this
would not be useful if JRuby+Truffle were generally slower
than other implementations. We therefore looked at the per-
formance of the code using metaprogramming between
implementations. Figure 2 shows the slowdown of other
implementations relative to JRuby+Truffle for a simple
#instance_variable_get, and then for the whole Set#eql?
operation which uses it.

For the simple operation, other implementations are an
order of magnitude slower than JRuby+Truffle. For the set
operation, other implementations are between 2.3x and
13.8x slower than JRuby+Truffle. When JRuby+Truffle’s
caching for metaprogramming is disabled performance is
reduced by 6.1x and 19.6x respectively.

7. Conclusions

Looking at all the Ruby metaprogramming functionality
which we have identified, we can pick out the key tools that

the AST specialization of Truffle and the partial evaluation
of Graal provide which have made it possible to implement
the metaprogramming functionality with reasonable effort.
We can then further generalise away from Truffle and Graal
to suggest a list of capabilities that any new framework for
implementing languages should consider providing in order
to support efficient metaprogramming for languages such as
Ruby.

We believe that currently Truffle and Graal is the only
system to both provide all these capabilities and to make
them easy to use.

Somewhere to store state is a basic tool for efficient
implementation of dynamic programming languages and
in particular their metaprogramming functionality. Inline
caches are one example of state, but others include profiling
to observe the actual types, ranges and values of variables.
In Truffle’s AST nodes are Java objects and so provide an
easy place to store arbitrary state.

Low-effort caching makes it tractable to add caching
for all metaprogramming operations where they make sense,
even if the caches need to complex, multi-dimensional dis-
patch chains. We know from the experience of JRuby and
Rubinius that if adding caches is very complex then they
may be omitted.

Dynamic optimization is needed for a baseline of per-
formance, but for metaprogramming a powerful form of dy-
namic optimization such as partial evaluation is important
to remove degrees of freedom that metaprogramming allows
but are not used in practice, such as calls to #send where the
method name is actually stable.

Dynamic deoptimization is needed so that code paths
and functionality can be removed during optimization and
then restored by returning to the interpreter if it is needed.
For example this allows the interpreter to always support
tracing, but for the optimised code to elide this functionality.

Automatic inlining and splitting is used to remove
the overhead of intermediate method calls in functionality
such as #method missing, and to push state such as inline
caches further down the call stack to reduce the degree of
their polymorphism.

Programmatic access to frames allows metaprogram-
ming functionality to read, write and reference method acti-
vation frames. In the case of Ruby we always need to be able
to reference a method activation frame due to the #binding
method.

Acknowledgments

Oracle, Java, and HotSpot are trademarks of Oracle and/or
its affiliates. Other names may be trademarks of their respec-
tive owners.

JRuby+Truffle includes work from many people includ-
ing Benoit Daloze, Kevin Menard, Petr Chalupa and Bran-
don Fish.

References

B. Daloze, C. Seaton, D. Bonetta, and H. Mossenbock. Techniques
and applications for guest-language safepoints. In Proceedings
of the 10th International Conference on Principles and Prac-
tices of Programming on the Java Platform: Virtual Machines,
Languages and Tools, 2015.

L. P. Deutsch and A. M. Schiffman. Efficient Implementation of
the Smalltalk-80 System, 1984.

G. Duboscq, T. Wiirthinger, L. Stadler, C. Wimmer, D. Simon, and
H. Mossenbock. An intermediate representation for speculative
optimizations in a dynamic compiler. In VMIL ’13: Proceedings
of the 7th ACM workshop on Virtual machines and intermediate
languages, 2013.

U. Holzle, C. Chambers, and D. Ungar. Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches.
In ECOOP’91 European Conference on Object-Oriented Pro-
gramming, volume 512 of Lecture Notes in Computer Science.
1991.

U. Holzle, C. Chambers, and D. Ungar. Debugging optimized
code with dynamic deoptimization. In PLDI ’92: Proceedings of
the ACM SIGPLAN 1992 conference on Programming language
design and implementation, 1992.

C. Humer, C. Wimmer, C. Wirth, A. Wo6B, and T. Wiirthinger.
A domain-specific language for building self-optimizing AST
interpreters. In Proceedings of the International Conference on
Generative Programming: Concepts and Experiences, 2014.

S. Marr, C. Seaton, and S. Ducasse. Zero-overhead metaprogram-
ming: Reflection and metaobject protocols fast and without com-
promises. In Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
2015.

C. Seaton. Specialising Dynamic Techniques for Implementing The
Ruby Programming Language. PhD thesis, The University of
Manchester, 2015.

C. Seaton, M. L. Van De Vanter, and M. Haupt. Debugging at
Full Speed. In Proceedings of the S8th Workshop on Dynamic
Languages and Applications (DYLA), 2014.

L. Stadler. Partial Escape Analysis and Scalar Replacement for
Java. PhD thesis, 2014.

A. WoB, C. Wirth, D. Bonetta, C. Seaton, C. Humer, and
H. Mossenbock. An object storage model for the Truffle lan-
guage implementation framework. In Proceedings of the 2014
International Conference on Principles and Practices of Pro-
gramming on the Java platform: Virtual machines, Languages,
and Tools, 2014.

T. Wiirthinger, C. Wimmer, A. WoB, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One VM
to rule them all. In Onward! ’13: Proceedings of the 2013 ACM
international symposium on New ideas, new paradigms, and re-
flections on programming & software, 2013a.

T. Wiirthinger, A. Wo6B, L. Stadler, G. Duboscq, D. Simon, and
C. Wimmer. Self-optimizing AST interpreters. In Proceedings
of the 8th Symposium on Dynamic languages, 2013b.

	Introduction
	Contributions

	Ruby Metaprogramming Patterns
	Idiomatic Ruby
	Dynamic method sends
	Dynamic method proxies
	Dynamic code evaluation
	Dynamic instance variable access
	Dynamic frame access
	Dynamic object graph access
	Tracing

	Implementations of Ruby
	Foundational Techniques
	Inline caching
	Truffle - self-specialising AST interpreters
	Dynamic optimization and deoptimization
	Graal - partial evaluation

	Implementation
	Dynamic method sends
	Dynamic method proxies
	Dynamic code evaluation
	Dynamic instance variable access
	Dynamic frame access
	Dynamic object graph access
	Tracing
	Storing state in Truffle
	Implementing caches in Truffle
	Avoiding megamorphisation

	Evaluation
	Methodology
	Dynamic instance variable access

	Conclusions

