

The Challenges of Irregular Parallelism

Chris Seaton seatonc@cs.man.ac.uk

Supervisors: Ian Watson and Mikel Luján Advanced Processor Technologies Group

Regular

Example problems

- Matrix multiplication
- Ray tracing
- Web servers

Problems where it is **easy** to find independent sub-tasks

Tools and techniques

- Processes, threads, actors
- Futures, sparks, fork-join
- Parallel arrays
- Dataflow

Irregular

Example problems

- Airline seat booking
- Web and social graphs
- Circuit routing

Problems where it is **hard** to find independent sub-tasks

Tools and techniques

- Heuristics, over-estimation
- Graph colouring
- Optimistic execution
- Transactional memory

Why don't the regular techniques work?

They rely on knowing which tasks are independent of each other **before** you start the task

Why aren't the irregular techniques enough on their own?

The regular techniques gave us important benefits that we lost with the irregular ones

- We're doing 'optimistic' execution but do we need to blindly hope for the best?
- Lost temporal and spatial locality
- Lost efficient use of cache
- We need to consider NUMA and distributed architectures

Trying a Combined Approach

Use a regular technique, and solve just the irregular parts using an irregular technique

Dataflow + Transactional memory

- D. Goodman, S. Khan, C. Seaton, Y. Guskov, B. Khan, M. Luján, and I. Watson. **DFScala: High level dataflow support for Scala**. In Proceedings of the 2nd International Workshop on Data-Flow Models For Extreme Scale Computing (DFM), 2012.
- C. Seaton, D. Goodman, M. Luján, and I. Watson. **Applying dataflow and transactions to Lee routing**. In Proceedings of the 7th Workshop on Programmability Issues for Heterogeneous Multicores (MULTIPROG), 2012.