Memory-safe Execution of C on a Java VM

Matthias Grimmer

Johannes Kepler University Linz,
Austria

matthias.grimmer@jku.at

Thomas Wiirthinger

Oracle Labs, Switzerland
thomas.wuerthinger@oracle.com

Abstract

In low-level languages such as C, spatial and temporal safety
errors (e.g. buffer overflows or dangling pointer derefer-
ences) are hard to find and can cause security vulnerabilities.
Modern high-level languages such as Java avoid these prob-
lems by running programs on a virtual machine that provides
automated memory management.

In this paper we show how we can safely execute C code
on top of a modern runtime (e.g., a Java Virtual Machine)
by allocating all data on the managed heap. We reuse the
memory management of the runtime, hence, we can ensure
spatial and temporal safety with little effort. Nevertheless,
we retain all characteristics that are typical for unsafe lan-
guages (such as pointer arithmetic, pointers into objects, or
arbitrary type casts). We discuss how our approach complies
with the C99 standard.

Compared to an optimized unsafe execution of a C pro-
gram (compiled with the GNU C compiler and all optimiza-
tions enabled) our approach has overhead of 15% on average
(peak-performance).

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Run-time environments, Code
generation, Interpreters, Compilers, Optimization

Keywords C, Memory Safety, ManagedC, Truffle, Graal,
Virtual Machine, Optimization, Dynamic Compilation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

PLAS’15, July 06 2015, Prague, Czech Republic.

Copyright © 2015 ACM 978-1-4503-3661-1/15/07. .. $15.00.
http://dx.doi.org/10.1145/2786558.2786565

Roland Schatz

Oracle Labs, Austria
roland.schatz@oracle.com

Chris Seaton

Oracle Labs, United Kingdom
chris.seaton@oracle.com

Hanspeter Mossenbock

Johannes Kepler University Linz, Austria
hanspeter.moessenboeck@jku.at

1. Introduction

Buffer overflows, dangling pointers, invalid deallocations, or
null pointer accesses are common programming errors when
using an unsafe low-level language such as C. These pitfalls
represent software bugs that are hard to find and can cause
security vulnerabilities of software projects [7, 8, 42].

Modern high-level programing languages (such as Java)
avoid these issues by running the program on a virtual ma-
chine (VM) that provides an automated memory manage-
ment (i.e. a garbage collector). Memory allocations and deal-
locations are exclusively done by the underlying VM and
untyped memory accesses, including pointer arithmetic, are
strictly forbidden. Instead, programmers use references to
access data on the managed heap and the VM checks each
access to ensure memory safety.

Such modern languages are widely used. However, pro-
grammers are still writing code in unsafe languages like C
because they want to reuse modules already written in this
language, achieve higher performance than what is normally
possible in a memory-safe high-level language, or generally
want to use the most appropriate language for a given task.

To ensure memory safety of C applications there exist
various approaches, e.g. [5, 6, 9-11, 14, 20, 23-26, 26—
30, 32, 33, 35, 36, 41].

All these approaches require considerable engineering
effort, but none of them reuses advanced components of
modern high-level language environments such as automatic
memory management to ensure spatial and temporal safety.
In this paper we present a novel approach for safely execut-
ing C on top of a modern runtime (e.g. the Java Virtual Ma-
chine (JVM)). Our approach reuses the automatic memory
management and the memory-safe access mechanisms of the
JVM for implementing the unsafe language C and hence en-
sures spatial and temporal safety with minimal effort.

In this paper, we show how a C language implementation
on top of the JVM can safely execute C code by allocating

all data on the managed Java heap, i.e., memory safety is
achieved by allocating C objects as Java objects and by
replacing unsafe C accesses with safe Java accesses. For
example, our C language implementation allocates an unsafe
C int array as a safe Java int array and checks whether
all accesses to the array elements fall within the valid array
bounds even if they are done using pointer arithmetic.

We retain all characteristics that are typical for unsafe
languages (such as pointer arithmetic, pointers that point into
objects, or arbitrary casts) by mapping C pointer values to
members of a Java object.

For implementing our approach, we extend TruffleC [16],
an environment that executes C code on top of the JVM
but does not guarantee memory safety. In this paper we
introduce ManagedC, a modified version of TruffleC that
guarantees memory safety.

In summary this paper contributes the following:

e We show how we use managed objects to represent C
allocations and still retain the characteristics of unsafe
languages. We discuss how our approach complies with
the C99 standard [2].

We describe how our approach allows reusing the auto-
matic memory management of the JVM for a memory-
safe execution of C.

e We compare the peak-performance of (unsafe) TruffleC
with the performance of (safe) ManagedC after dynamic
compilation. ManagedC is 7% faster than TruffleC and
has an overhead of 15% compared to the best GCC per-
formance (peak-performance after an initial warm-up).

2. System Overview

In this section we introduce TruffleC, a dynamically compil-
ing C interpreter on top of the JVM, which is based on the
Truffle framework and the dynamic Graal compiler. Also, we
define the properties of a memory-safe program execution.

2.1 Truffle and Graal

Truffle [45, 46] is a platform for building high-performance
language implementations. A Truffle language implementa-
tion is an AST interpreter, where the source code of the guest
language is compiled to an AST that can then be executed.
Truffle ASTs consist of nodes that define execute methods,
which are recursively evaluated.

A Truffle AST can speculatively rewrite itself with a spe-
cialized variant at run time [45], based on profile informa-
tion, which is collected at run time. If assumptions about a
running program turn out to be wrong, specialized Truffle
ASTs revert to a more generic unspecialized form.

Truffle guest language implementations are dynamically
executed by the Graal VM [31], a modified version of the
Java HotSpot™ VM. The GraalVM reuses all components
of the HotSpot™ VM, including the garbage collector and
the interpreter. However, it adds a new dynamic compiler

| C Program | Application
’ ManagedC ‘ AST Interpreter
Truffle

Graal | Interpreter| GC | Graal VM

HotSpot Runtime
| 0s |

Figure 1: Layered approach of hosting the C language on top
of Truffle.

(the Graal compiler), which is entirely written in Java. This
allows the compiler to be used as a library by the Truffle
framework: When Truffle discovers an AST that exceeds a
predefined execution threshold, it uses the Graal compiler
to transform the tree to highly efficient machine code. The
compilation process first inlines all execute methods into
a single method and then performs aggressive intra-method
optimizations. This process is called partial evaluation. The
Graal compiler inserts deoptimization points [21] at every
point in the code where assumptions might become invalid,
i.e., where specialized trees have to be reverted to a more
generic version. Deoptimization transfers the control from
compiled machine code back to the AST interpreter where
the affected AST nodes eventually rewrite themselves. Fig-
ure 1 shows how TruffleC uses the Truffle framework, which
itself is hosted by the Graal VM.

2.2 TruffleC

TruffleC [16] is a Truffle-based C language implementation.
It dynamically executes C code and heavily uses the self-
optimization capability of Truffle: TruffleC uses polymor-
phic inline caches [22] to efficiently handle function pointer
calls, profiles branch probabilities to optimistically remove
dead code, profiles run-time values, and replaces them with
constants if they do not change over time. TruffleC performs
well compared to standard C compilers such as GCC [4] or
LLVM/Clang [3] in terms of peak performance [16].

TruffleC allocates C data on the native heap rather than on
the garbage-collected Java heap and uses the same alignment
as conventional C compilers do. This allows TruffleC to
support any kind of pointer arithmetic and to replicate the
same behavior as conventionally compiled C code.

TruffleC represents all pointers to the native heap as
CAddress Java objects that wrap a 64-bit value [17] (a raw
memory address). In this paper we call data on the native
heap native data. TruffleC uses unsafe memory operations
to access native data, hence the original version of TruffleC
does not improve on memory safety.

2.3 Memory Safety

A program execution is considered memory safe [24, 25, 40]
if it ensures spatial and temporal safety:

Spatial safety ensures that pointers are only dereferenced
if they point to a valid memory region [37], i.e., if the
access is within the bounds of the accessed object. This
prevents errors such as null pointer dereferences or buffer
overflows.

Temporal safety ensures that pointers are not used after the
referenced object has been deallocated [37]. This pre-
vents errors such as dangling pointers or illegal deallo-
cations (e.g. calling free on a pointer twice).

3. Managed Addresses

In the following section we describe how ManagedC repre-
sents memory addresses and allocations of a C program.

We use MAddress objects to represent pointer values:
MAddress objects are fat pointers, i.e., they store a reference
to a data object and an offset (Figure 2). The data field refer-
ences an object on the Java heap that we use as a replacement
for a native allocation. In this paper we call a Java object that
replaces a native allocation a managed allocation.

The offset is a byte offset relative to the data object. It is
updated by address computations and pointer arithmetic and
allows us to represent pointers that point into an object (e.g.
to a field).

When dereferencing an MAddress object, the offset is
passed to the data object (the managed allocation), which
has a layout that maps the offset to a member. Thus we can
check whether a pointer references a valid member.

Section 6.2.6.1. §4 of the C99 standard [2] defines the
object representation of C objects: The object representation
is the set of n x CHAR_BIT bits, where n is the size of
an object of that type in bytes. An MAddress object uses
a unique ID of the data object plus the offset as its object
representation. Even though a pointer is a MAddress object,
the system provides the illusion that it can be read as a word-
sized sequence of bytes. Based on this object representation,
MAddress objects can be compared to each other as well as
converted to integers.

3.1 Address Computation and Pointer Arithmetic

Figure 3 shows the declaration of a struct S. We assume
the object representation of the struct on a x86-64 plat-
form: The int member a (4 bytes) is stored at offset 0 and
the double member b (8 bytes) at offset 8. The 4 bytes from
offset 4 to 8 are not in use and their content is therefore un-
defined.

Accessing array elements or struct members in C in-
volves an address computation. The same is true for pointer
arithmetic. Such computations can be conveniently done
with MAddress objects.

To compute the address of an array element, a C compiler
would multiply the array index with the element size and add
this as an offest to the address of the array. ManagedC uses
MAddress objects instead of raw addresses; it also multiplies

MAddress Managed Allocation

implements. implements
TruffleObject TruffleObject
data — layout

offset content

Figure 2: MAddress objects are pointers to managed alloca-
tions.

struct S { void foo() { i struct S
int a; struct S *s = Po
double b; malloc(sizeof(struct S));

1 s->a = 12; i

s->b = 4.2; b

a

undef.

Figure 3: Writing a struct member.

the index with the element size and stores this value in the
offset field of an MAddress object.

For processing the assignment s->b = 4.2; a C com-
piler would add the offset of b (8) to the address of the ob-
ject referenced by s and assign the value 4. 2 to this address.
ManagedC represents the pointer s using an MAddress ob-
ject that references a managed allocation of type S; its offset
is 0. When accessing s->b, we copy the MAddress object of
s and add the value 8 to its offset field thus referencing the
field b. ManagedC uses this new MAddress object to access
the member b.

For pointer arithmetic, Section 6.5.6 of the C99 stan-
dard [2] defines the following semantics: For an addition/-
subtraction, one operand shall be an integer type. When two
pointers are subtracted, both shall point to elements of the
same array object and the result is the difference of the sub-
scripts of the two array elements.

We implement these semantics as follows: When an in-
teger value is added/subtracted to/from a pointer, we add/-
subtract this integer value times the size of the pointed-to
type to/from the offset value of an MAddress object. If two
address values are subtracted, we calculate the difference of
the subscripts using the offset values of the MAddress ob-
jects. If two addresses do not reference the same array ob-
ject, the result is undefined, which conforms to the standard
(see Section 6.5.6. §9 of the C99 standard).

3.2 Compliance With the C99 Standard

Section 6.2.6.1 §4 and §5 of the C99 standard define re-
quirements on the representation of pointer types and Sec-
tion 6.3.2.3 defines the conversions that are valid on pointer
values. In the following list we explain how ManagedC com-
plies with these requirements:

® 6.2.6.1 §4: An MAddress object has an object representa-
tion, which is a unique ID of the data plus the offset. Two
pointers that reference the same data object thus have the
same object representation.

® 6.2.6.1 §5: It is not possible for programmers to handcraft
a valid object representation of a pointer. If the program-
mer constructs an object representation that is equal to the
object representation of a valid pointer and if she converts
that object representation back to a pointer, this pointer can
still not be dereferenced.

The C standard explicitly states that modifying an object
representation by an lvalue expression that does not have
character type is not allowed, but it does not say anything
about modification with an lvalue expression that has char-
acter type. We decided that directly modifying an object
representation always creates an invalid pointer. Otherwise
it would be possible to access objects that should be inac-
cessible.

® 6.3.2.3 §1, 2, 7, and 8: A pointer of type A can be con-
verted to a pointer of type B without modifying the corre-
sponding MAddress objects (i.e., the data and offset fields
remain unchanged).

® 6.3.2.3 §3 and 4: The integer constant O can be assigned
to an MAddress object. The data of such an MAddress
object is then null and the offset is 0, which we consider
the null pointer constant. This constant compares unequal
to any other pointer to an object or function.

¢ 6.3.2.3 §5: An integer may be converted to any pointer
type by storing the integer value in the offset field of the
MAddress object and setting the data to null. According
to the C99 standard, converting an integer to a pointer
results in an undefined behavior. In our case, the pointer
value cannot be dereferenced (the data is null), which in
accordance with the standard.

® 60.3.2.3 §6: Any MAddress object may be converted to
an integer type, which uses the object representation of
a pointer (i.e., the unique ID of the data object plus the
offset).

In ManagedC, each pointer variable starts as a null
pointer, i.e., the data is null and hence the pointer cannot be
dereferenced. A valid pointer value is produced by applying
the address-of operator (&) on any C object or by an alloca-
tion of memory (e.g., by a manual malloc or an automatic
stack allocation). In these cases, we create an MAddress
object where the data references the managed allocation.
These valid pointer values can then be modified by pointer
arithmetic and address computations (i.e., by updating the
offset of an MAddress object; see Section 3.1).

If the data of an MAddress is null, any access to it
causes a high-level run-time error. This allows us to detect
null pointer accesses.

4. Object Access: Spatial and Temporal
Safety

In this section we describe how MangedC ensures spatial
and femporal safety of C programs. We distinguishes be-

tween a strict mode and a relaxed mode:

When running ManagedC in strict mode, only well-defined
memory accesses are allowed: A well-defined access cannot
read from uninitialized memory and the pointer used in the
access must reference a valid destination, i.e., the value at the
destination must have a type that is expected by the access
operation. For example, it is not allowed to dereference a
type-punned pointer, i.e., a pointer of type B that was casted
from a pointer of type A. An access via such a pointer would
not resolve to a valid destination. Sections 6.5 §5 and 6.3.2.3
§7 of the C99 standard state that the program shall not access
type-punned pointers [2].

When running ManagedC in relaxed mode, programmers
can read from uninitialized memory and can access any
memory destination (undefined memory access). For exam-
ple, a pointer can be casted to a pointer with a different type
(type-punning) and it is possible to dereference it. In these
cases, ManagedC mimics the behavior of plain C compilers
but still ensures spatial and temporal safety in the sense of
the definitions above.

4.1 Well-Defined Access Operations

In ManagedC, objects of a C program can be represented
as Primitive objects, Array objects, Function objects, and
Structured objects (see Figure 4). All of them can be ref-
erenced by an MAddress object.

Primitive objects: We represent primitive C values (e.g.,
int, double, ...) as Java objects that box a Java primitive
value (see Figure 4a). In strict mode, it is only possible to
access a Primitive object if the access operation is well-
defined.

Array objects: We represent C arrays by objects that box
a Java array. For example, if C code allocates an int ar-
ray, ManagedC allocates an Int32Array object that wraps
a Java int array (see Figure 4b). Again, in strict mode, it is
only possible to access an Array object if the access opera-
tion is well-defined, i.e., if the type of the access operation
matches the element type and the offset of the MAddress
object is aligned (the offser must be a multiple of the array’s
element size).

An array object holds the size of an element in bytes.
When an element is accessed, the offset of the MAddress
is divided by this size to get the index of the array element.

Function objects: C functions are represented as ASTs,
wrapped in Function objects (see Figure 4c). MAddress
objects can point to a Function object (function pointers),
which is then executed by ManagedC.

Structured objects: C structs and unions are repre-
sented by so-called Structured objects that consist of a
content and a layout:

The content is an object of type DynamicObject [43]
that contains the values of all assigned members. This

Content
Structured
i slot: s1: 12
] TruffleObject slot: s2: 4.2
Int32Array
Integer32 implements Function
implements TruffleObject content — Layout
TruffleObject X j
! content int[] TruffleObject layout adr | slot | type
i 0 s1 | int
content — int layout - stride = 4 content — AST 8 | s2 |dbl

(a) Primitive integer. (b) Integer array.

(c) Function.

(d) Any memory allocation.

Figure 4: Memory-safe representation of C data.

DynamicObject was originally designed for dynamic guest
language implementations on top of Truffle (e.g. Truf-
fleJS [43] and TruffleRuby [34]) to represent their dynamic
data structures, however, ManagedC uses it to represent
managed allocations. The DynamicObject is an efficient
data structure that allows adding and removing members to
and from the object at run time (members of a Dynamic-
Object are stored in slots).

The slots of a DynamicObject can contain primitive
values, address values, as well as other managed allocations.
The content of the Structured object of struct S (see
Figure 3) contains two values:

{slotl — 12,slot2 — 4.2} (1

The layout is a map storing the offsets, types and slots
of the members and is used to map an offset to the corre-
sponding slot and its type (see Figure 4d). The layout of
the Structured object of struct S (see Figure 3) contains
two entries:

{0 — (slotl,int), 8 — (slot2, double)} 2)

If a C program accesses a Structured object with a
certain offset, the offset is mapped to a slot of the content.
For example, when accessing the member b of struct S,
the layout maps the offset 8 to slot2, which contains an 8-
byte double value.

In strict mode, it is only possible to access Structured
objects if the operation is well-defined, i.e., if the layout can
map an offset to a slot and if the type of the access operation
matches the type of the slot.

For non-primitive members (e.g., arrays and structs) of
astruct orunion we allocate a separate Array/Structured
object and store it into the slot of the content. When access-
ing sub-objects (e.g. when a struct has an array member),
we compute the offset within the sub-object and access it in
the same way. Union member slots can be accessed with the
types of the union members.

4.2 Access Operations in Relaxed Mode

When running in relaxed mode, ManagedC allows accessing
uninitialized memory and dereferencing type-punned point-
ers.

4.2.1 Allocations Without Type Information

Programmers can allocate memory without providing infor-
mation about its type. In this case, we create a Structured
object with a layout starting in an uninitialized state, i.e., if
no data was written to this allocation yet, the layout does not
contain any entries. A write operation then adds a new slof to
the content and creates an entry in the layout. In other words,
when a pointer p is dereferenced to write to a field (e.g. p->a
= 3;),anew slot (e.g., slot0) is added to the content (here
containing the value 3), and a corresponding entry is made
in the layout table (e.g., 0 — (slot0, int)).

A read operation that the layout cannot map to a slot be-
cause the memory is uninitialized produces a default value.

4.2.2 Undefined Object Accesses

ManagedC maps the offset of an MAddress object to a mem-
ber of a managed allocation. If this is not possible or if the
mapped member does not have the type that is expected by
the access operation, we call this an undefined access:

An undefined read operation to a Primitive object returns the
same value as a raw memory read would have produced, i.e.,
we mimic the object representation of native C primitives.
Consider the following example:

double v = 42.5;
double *d = &v;
int i = (Cint *)d)[0];

The read operation returns an int value that contains the
lower 4 bytes of the double value 42.5.

Upon an undefined write access to a Primitive object, we
first allocate a new Structured object and copy the data
to its content. We also initialize the layout: The layout for a
primitive object has one entry. The program finally accesses
this Structured object and uses it for the rest of the pro-
gram execution.

In case of an undefined read operation to an Array object,
ManagedC reads from all elements that overlap with the ac-
cessed element and returns the same value as a raw memory
read would have produced. Let us assume that we cast an
int array to a double:

int a[5];
double v = ((double *)a)[@];

The read operation reads the int elements (32 bits) at in-
dexes 0 and 1 and composes their values to a 64 bit double
value.

Again, undefined write operations transform the Array
object to a Structured object.

A Structured object can handle any undefined access op-
eration. We use the layout to map the offset of an MAddress
object to a slot and hence mimic the object representation of
a native allocation on the x86-64 platform.

An undefined read operation reads all slots that overlap
with the accessed element, composes their values, and re-
turns the bit pattern at the given offset. This produces the
same value as a raw memory read from native data would
have produced. Let us assume that we cast a pointer s (of
type Struct S*) to a pointer of type int* and perform an
undefined read operation:

int *i = (int*)s;
int v = i[2];
i[2] = 13;

The read access of i[2] should return the first 4 bytes of
the double value s->b. Thus, ManagedC reads slor2 (the
double value s->b) and returns the first 4 bytes of the value
at offset 8 encoded as an int.

In an undefined write operation, a C program can partially
overwrite one or more members of a Structured object.
In i[2] = 13, the program attempts to write a 4 byte int
value to offset 8, which is mapped to an 8 byte double slot.
This means that slots in a Structured object need to be
partially overwritten, which we implement as follows: We
remove all slots that are partially overwritten. Then we add
a new slot to the content for the new value and also slots for
the remaining bytes of the partially overwritten slots.

For the write access i [2] = 13, we first remove the en-
try 8 +— (slot2,double) from our layout and also remove
slot2 from the content. Afterwards we add two new entries
to our layout: {8 — (slot2,int), 12 — (slot3, undefined)}.
Slot2 contains the value 13 and s1ot3 contains the remain-
ing 4 bytes of the double value 4.2, which was previously
stored at offset 8. The result is a layout with three entries:

{0 — (slotl,int), 8 — (slot2, int),

3
12 +— (slot3, undefined)} &

The content contains three values:
{slotl > 12,slot2 > 13,slot3 — ...})

4.3 Resolving Access Operations at Run Time

In the previous sections we described how we represent ob-
jects that are referenced by C pointers as managed alloca-

int *p = malloc(n * sizeof(int));

int **pp = &p;
MAddress MAddress Int32Array
implements implements implements.
TruffleObject TruffleObject TruffleObject
data — data content **__int[]
offset =0 offset layout > stride = 4

Figure 6: MAddress objects representing a chain of pointers.

tions. Now we will show how these objects and their mem-
bers are accessed in the AST. This is done by sending mes-
sages to the managed allocations and by resolving these mes-
sages at run time [15, 18].

All kinds of managed allocations are accessed in a uni-

form way. Every Java object that implements Truffle-
Object can be accessed via messages, hence, all managed
allocations implement this interface (see Figure 4). There are
read and write messages for all primitive C types as well as
messages for reading and writing an MAddress.
In response to such a message, a TruffleObject returns
an AST snippet that contains object-specific operations for
executing the access operation. For example, a Structured
object returns an AST snippet that maps an offset to a slot
and eventually accesses this slot whereas an Int32Array
returns an AST snippet that divides an offset by 4 (the size
of an element) and accesses a Java integer array.

Upon first execution, every message to an object re-
solves to an object-specific AST snippet (message resolu-
tion) [15, 18], which is then inserted into the enclosing AST
as a replacement for the message. In other words, message
resolution replaces object-independent messages by object-
specific ASTs.

During later execution, the value of an MAddress can
change so that it points to a different kind of managed al-
location. In order to detect that, a guard is inserted into the
AST that checks the object’s layout before accessing the ob-
ject.

Figure 5 shows the AST for the statement s->b = 4.2,
where a WriteDouble message node is used to write the
double value 4.2 to the struct member b. Message reso-
lution replaces the WriteDouble node with a SafeWriteSlot (a
Structured-specific AST node). Before the AST accesses
s, it checks if its data really references a Structured ob-
ject (is Structured? node). If during execution s would
change to point to a DoubleArray say, the execution would
fall back to sending the WriteDouble message again, which
would be resolved to a DoubleArray-specific AST snip-
pet. If the object access is polymorphic in the sense that it
accesses different kinds of managed allocations over time,
ManagedC links the different object-specific AST snippets
to a chain like an inline cache [22] and therefore caters for
good performance.

MAddress:
s_[Allocation, 8]

WriteDouble 42 }r

s[Allocation, 0] 8 val
I

LocalVar

WriteDouble (.

Allocation,offset,val) Lo

.
MemberAddress Const :
MAddress: :
offset +

M i
Recorion |
i> SafeWriteSlot ‘

is Structured?

SafeWriteSlot 42

MAddress:
{(s_[Allocation, 8]

slot = layout (offset)
content . set (slot,val)

MemberAddress Const

offset + 8 val
I
LocalVar

Figure 5: Resolving managed allocation-specific access operations.

The AST snippets returned by Structured objects are
later specialized according to their execution profile (Sec-
tion 2.1). This gives good results because of the following
observations: First, it is likely that a C program accesses an
allocation in a well-defined fashion, which means that the
layout of a Structured object does not change during run
time. Second, statements that access an allocation are likely
to do so with a constant offset. For example, a struct ac-
cess s—>b always accesses the Structured object with the
same offset.

Thus, we speculate that the offser of the MAddress and
the layout of the Structured object are constant. So we
cache the slot and directly access the content without any
lookup in the layout. We guard these assumptions by a run-
time check and fall back to the lookup if the check fails.

Object accesses via messages and message resolution are
Truffle mechanisms that were already published in [15, 18].
We use these techniques for accessing managed allocations.

Each managed allocation returns an AST snippet that
makes sure that the offset is within the bounds of the allo-
cation. These run-time checks ensure spatial safety, which
prevents errors such as null pointer dereferences or buffer
overflows.

4.4 Allocations and Deallocations

We distinguish between stack allocations (memory that
is automatically allocated when a function is called and
automatically deallocated when the function returns) and
heap allocations (memory that is manually allocated using
malloc, calloc, or realloc, as well as memory that lives
throughout the entire program execution such as static local
variables):

Stack allocations: When a C function is called, a new stack
frame is created for its local variables. ManagedC allo-
cates such stack frames as managed allocations (i.e., on
the heap and not on the stack). When a function returns,
its frame is marked as deallocated. 1t is reclaimed au-
tomatically by the GC of the JVM as soon as it is not
referenced any longer.

Heap allocations: When a C program manually allocates
memory, ManagedC represents it as a managed alloca-
tion. When this memory is manually freed, the allocation
is marked as deallocated but is not removed. If the C pro-

gram tries to access this allocation later or if it calls free
twice, we report a high-level run-time error.

We use the memory management of the JVM to guarantee
temporal safety: object deallocation is done automatically
by the GC if and only if the object is not referenced any-
more. Marking managed allocations as deallocated allows us
to mimic the behavior of C by simulating deallocations. We
mark manged objects as deallocated by setting the content
reference (see Figure 4) to null. We can detect if a pointer is
used after the referent has been deallocated, i.e, when a dan-
gling pointer is accessed or an object is deallocated twice.
ManagedC also makes sure that only valid allocations are
accessed, i.e., MAddress objects whose data field references
a life managed allocation. This ensures temporal safety.

ManagedC can even do away with memory leaks that re-
sult from forgetting to deallocate objects. Such errors cannot
occur in ManagedC, because the GC automatically frees a
managed allocation as soon as it is not referenced any longer.
In fact, manual deallocation becomes superfluous, because
managed allocations are garbage collected.

5. Applications, Trade-offs, and Future Work

ManagedC allows memory-safe execution of C code in strict
and in relaxed mode: The strict mode can be used during de-
velopment to detect undefined operations of a program, such
as accessing type-punned pointers. To run existing source
code without modification we offer the relaxed mode, which
mimics the behavior of industry standard C compilers. In
this mode, ManagedC can run existing code that depends on
the behavior of industry-standard C compilers without sacri-
ficing spatial or temporal memory safety.
In the following we discuss the trade-offs of ManagedC:

TruffleC limitations: TruffleC is not complete and is miss-
ing language features. For example, TruffleC only supports
single-threaded programs [16]. As ManagedC is based on
TruffleC, this restriction also applies to ManagedC. The
missing support of multi-threading is also the reason why
this paper evaluates ManagedC using the C99 standard
rather than the C11 standard. However, we are convinced
that a full implementation of all language features is possi-
ble with reasonable effort in the future.

ManagedC limitations: Managed allocations cannot be
shared with precompiled native code. Therefore, ManagedC
requires that the source code of the entire C program is avail-
able and is executed under ManagedC. We provide a Java
implementation for functions that are not available in source
code (e.g. functions of standard libraries). Rather than doing
a native call, ManagedC then uses these Java implementa-
tions that substitute the native implementations. ManagedC
currently has substitutions for various functions defined in
assert.h, limits.h, math.h, stdarg.h, stdbool.h,
stdio.h, stdlib.h, string.h, time.h, and wchar.h.
The list of standard library substitution is not yet complete,
however, our future work will focus on completing this
and hence make ManagedC more complete. Under these
premises, we can run C programs entirely on top of the JVM
without ever accessing native code or native data.

Memory trade-offs: Managed allocations in Java have an
object header (16 bytes), which increases their size com-
pared to native allocations. However, Graal’s partial escape
analysis [39] ensures that an object only gets allocated if
it escapes its compilation scope. Otherwise Graal performs
scalar replacement and does not allocate the object on the
heap.

Future Work: Our future work will focus on these lim-
itations: First, we will work on completeness of TruffleC,
this includes adding features like multi-threading. Second,
we will complete the list of substitutions of standard library
functions. This work will make TruffleC and ManagedC ap-
plicable for full-sized applications.

6. Reaction to Undefined Operations or
Memory Errors

ManagedC detects memory errors as well as undefined ac-
cess operations at run time, immediately before memory is
accessed in some illegal way. ManagedC throws a Java ex-
ception that describes the error and includes also a stack
trace at the error position.

Currently, such Java exceptions are caught, the error and
the stack trace are printed, and the program exits. Since the
effects of memory-unsafe accesses and undefined memory
accesses are not specified by the C standard, this behavior is
fully compliant. This kind of error reporting could either be
used during testing to find bugs, or at run time to further
enforce correctness. Figure 7 shows an example of how
memory-unsafe accesses are reported. The implementation
of doWork erroneously loops with the condition i <= N,
rather than i < N, which causes it to access one element
beyond the end of the array within the loop. ManagedC
reports this as BufferOverflowError and tells the user
that the error occurred in doWork which was called by main.

7. Performance Evaluation

We measured the overhead of memory-safe managed allo-
cations compared to unsafe native allocations by running a
number of benchmarks.

7.1 Benchmarks

We used benchmarks from the SciMark benchmark suite!
and from the Computer Language Benchmarks Game? that
heavily access C structures and arrays. The benchmarks con-
sist of a Fast Fourier Transformation (FFT), a Jacobi succes-
sive overrelaxation (SOR), a Monte Carlo integration (MC),
a sparse matrix multiplication (SM), a dense LU matrix fac-
torization (LU), a simulation of the N-body problem (NB),
a generation of random DNA sequences (FA), a computa-
tion of the spectral norm of a matrix (SN), as well as the
Fannkuch (FK) and Mandelbrot (MB) benchmarks, which
both do a lot of integer and array accesses. These bench-
marks suit well for our evaluation as they heavily access dif-
ferent managed allocations such as Structured objects, ar-
ray objects, and primitive objects.

7.2 Experimental Setup

We ran the benchmarks on an Intel Core i7-4770 quad-
core 3.4GHz CPU running 64 Bit Debian 7 (Linux3.2.0-4-
amd64) with 16 GB of memory. TruffleC as well as Man-
agedC are based on Graal revision 5b24a15988fe from the
official OpenJDK Graal repository®. The evaluation reports
scores (higher is better) for each benchmark and its config-
uration. Figure 8 shows the results of the benchmarks. The
score is the proportion of the execution count of the bench-
mark and the time needed (executions/second).

We are interested in peak performance of long running
applications after an initial warm-up. Hence, we measure the
performance of C programs after dynamic compilation. An
evaluation of warm-up performance of a Truffle language
implementation is out of scope for this work.

We executed every benchmark 10 times after an initial
warm-up of 50 iterations to arrive at a stable peak perfor-
mance and calculated the average for each configuration us-
ing the arithmetic mean. We report the standard deviation by
showing error bars in the chart. The x-axis of the chart shows
the different benchmarks. The y-axis of the chart shows the
average scores (higher is better) of the benchmarks, where
100 is the performance of GCC with optimization level OO0.
Where we summarize across different benchmarks (Mean)
we report a geometric mean [1].

TruffleC uses the same memory management as plain C
compilers, i.e., it allocates data on the native heap and ac-
cesses it via unsafe access operations. ManagedC replaces
these unsafe allocations with safe managed allocations. In
this evaluation we want to compare the performance differ-

1 http://math.nist.gov/scimark2/index.html
2 http://benchmarksgame.alioth.debian.org/
3 http://openjdk.java.net/projects/graal/

http://math.nist.gov/scimark2/index.html
http://benchmarksgame.alioth.debian.org/
http://openjdk.java.net/projects/graal/

#include<stdlib.h>

int mainQ) {

BufferOverflowError:

void doWork(int *p, int N) { int N = 5; at doWork (Example.c)
int 1i; int *p = malloc(N * sizeof(int)); at main (Example.c)
i=5 for (i = 0; i <= N; i++) { doWork (p, N);
m—) p[i] = 0; free (p);
} return 0,
} }

Figure 7: A memory-unsafe action being detected and reported.

ence between unsafe native allocations and safe managed al-
locations, hence we focus our evaluation on TruffleC com-
pared to ManagedC. A detailed comparison of the Truf-
fleC performance to industry-standard C compilers is out of
scope for this work and can be found in [16]. In this paper,
we also add the numbers for GCC with optimization level
00 (baseline) and the numbers of GCC best (i.e., the best
performance achieved with the optimization levels O1, O2
and O3). This gives some ideas of how ManagedC compares
to industry-standard C compilers.

ManagedC executes these benchmarks in strict mode (see
Sections 5 and 4.1).

7.3 Discussion

ManagedC performs various checks when accessing a man-
aged allocation. For example, when accessing an Array ob-
Jject, it does the following:

1. It checks if the managed allocation is not null and if the
allocation is an Array object (see Section 4.3).

2. It checks if the Array object is live (see Section 4.4).
3. It checks if the index is in-bounds.

4. Finally, it checks if the type of the access operation
matches the type of the array element.

Dynamic compilers (such as the Graal compiler) can
eliminate many of these checks and can therefore reduce
the run-time overhead [12, 13, 38, 44]. Using conditional
elimination [38], the Graal compiler can remove redundant
run-time checks by merging them. Conditional elimination
reduces the number of conditional expressions by perform-
ing a data-flow analysis over the IR graph and pruning con-
ditions that can be proven to be true. Loop invariant code
motion [12, 13] moves run-time checks out of loops if the
compiler can prove that a condition is loop-invariant. In this
case, the static number of checks remains the same, but a
check outside a loop is likely to be executed less often than
inside a loop. Array bounds check elimination [44] fully re-
moves bounds checks if it can prove that they never fail.
Also, whenever possible, it moves bounds checks out of
loops.

In addition to that, the Graal compiler speculatively
moves guards out of loops even if they have a control depen-
dence in the loop. In this case, the (possibly more strict) con-
dition before the loop implies the guard in the loop, which
allows removing the check inside the loop.

The performance evaluation shows that the safe execu-
tion of a C program with ManagedC is on average 7% faster
compared to the unsafe execution with TruffleC. The perfor-
mance difference can be explained as follows:

ManagedC performs equally well as TruffleC when the
dynamic compiler is able to remove all run-time checks (FA,
SN, MB, FFT). In other words, there is no performance dif-
ference between an unsafe memory access and a safe man-
aged object access when the dynamic compiler can remove
all run-time checks. Only if the dynamic compiler cannot
remove all run-time checks (NB, LU), the overhead of Man-
agedC is 17% for LU and 24% for NB compared to Truf-
fleC. Managed allocations allow the Graal compiler to ap-
ply a sophisticated partial escape analysis with scalar re-
placement [39] on the objects of a C program. If the com-
piler can eliminate the allocation of managed objects, Man-
agedC can even outperform TruffleC, the performance im-
provement varies between 9% (FK) and 38% (SOR).

If we compare the performance of ManagedC to the un-
safe execution of C code compiled with GCC best, the over-
head is 15% on average. The performance difference varies
between 25% speedup to 106% slowdown of ManagedC
compared to GCC best. A major part of this overhead is due
to the performance difference between TruffleC and GCC
best (TruffleC has an overhead of 23% compared to GCC
best). Hence, if the TruffleC performance improves, the gap
between ManagedC and GCC best will also get smaller. We
are convinced that ongoing work on Truffle’s dynamic com-
piler will improve the performance of TruffleC and thus also
of ManagedC.

8. Related Work

Memory safety of C is a well researched area and can be
categorized into software-based approaches and hardware-
based approaches. ManagedC is a software-based approach,
thus we focus on research in this area rather than on hardware-
based research such as [6, 10, 26, 27, 32, 35, 36, 41].
Like existing literature surveys [25], we distinguish between
pointer-based approaches and object-based approaches. Fi-
nally, we discuss the Boehm-Demers-Weiser GC, which pro-
vides temporal safeness. A survey of related work to inter-
pretation of C code can be found in [16].

8.1 Pointer-based Approaches

Our technique is inspired by pointer-based metadata ap-
proaches: Pointer-based approaches [5, 24-26, 28, 29] store

600

400 | 7§ .
200 | .
0

0oGCC 00B8GCC best BB TruffleC ! 8 ManagedC

Figure 8: Performance numbers of TruffleC and ManagedC, relative to GCC O0. Higher is better.

additional information for each pointer of a C program so
that pointers become multi-word values (fat pointers) [5, 29]
that hold the actual pointer value along with metadata (e.g.,
the upper and the lower bounds of the referenced object).
Pointer arithmetic then modifies the actual pointer value, but
the metadata remains unchanged. When a pointer is derefer-
enced, the actual pointer value is checked against the bounds
of the object, which ensures spatial safety.

To ensure temporal safety, every allocated object gets a
unique identifier (capability) [5]. These capabilities stay in
existence even after the deallocation of an object, which al-
lows checking the pointer’s validity when it is dereferenced.

SafeC [5] allows the detection of spatial and temporal
memory errors by using fat pointers that encode the pointer
value, base and size information, a storage class (Heap,
Local, or Global allocation), and a capability to the referent.
The run-time checks introduced by SafeC cause a run-time
overhead between 130% and 540% [5].

CCured [28, 29] classifies pointers in three categories:
SAFE pointers, which cannot be used for pointer arithmetic,
array indexing or type casts and cause almost no run-time
overhead; SEQ pointers, which are fat pointers that allow
pointer arithmetic, array indexing and primitive casts; and
WILD pointers, which support arbitrary casts but have ad-
ditional metadata and require run-time checks. CCured pro-
grams have an overhead in the range of 3% to 87%.

Nagarakatte et al. [24] describe SoftBound [24] and
CETS [25], which use compile-time transformations for
detecting spatial and temporal safety violations. These ap-
proaches keep the metadata in a separate metadata space
(in contrast to fat pointers), which retains memory layout
compatibility. They report an average run-time overhead of
116% [25].

An MAddress object can be seen as a fat pointer (to en-
sure spatial safety) and the memory management of the JVM
ensures temporal safety. The novelty in our approach is that
we transferred the idea of fat pointers to a C interpreter (i.e.,
TruffleC), which is implemented in Java. It uses a dynamic

compiler (i.e., Graal) and a sophisticated automated mem-
ory management (the JVM garbage collector). This allows
us to ensure spatial and temporal safety with little effort:
We use a layout to map the offset of an MAddress to the
corresponding member of a managed allocation and eventu-
ally do a Java member access, which ensures spatial safety.
We mark freed objects as deallocated, which allows us to
ensure temporal safety. The deallocation of the object itself
is then done by the GC of the JVM. Also, our approach is
source-compatible with regular C programs and does not re-
quire any changes in them because we mimic the behavior
of industry-standard C compilers. We dynamically compile
ManagedC ASTs with a state-of-the-art dynamic compiler,
which is very good at removing access bounds checks or
moving them out of hot loops. After an initial warm-up and
dynamic compilation of the AST we can report an average
overhead of 15% (from 25% speedup to 106% slowdown)
compared to programs that are compiled with the best possi-
ble optimization level of GCC.

8.2 Object-based Approaches

Object-based approaches track information about each ob-
ject such as its status (allocated/deallocated) or its bounds
and stores it in an auxiliary data structure [9, 11, 14, 20,
23, 30, 33]. Spatial and temporal safety is ensured by map-
ping pointer values to the tracked information (e.g., using a
splay tree [23] or a trie [30]) and by checking that pointer
arithmetic and pointer dereferencing fall within the bounds
of the object. Jones and Kelly [23] report an overhead of
400 — 500% compared to GCC performance.

Purify [20] traps every memory access by instrumenting
the object code of a program and by allocating “red zones”
before and after each allocation. They report a run-time
overhead of 450% compared to the GCC performance.

Eigler’s mudflap system [14] inserts an additional pass
into GCCs normal compilation to instrument the C code
and to assert a validity predicate at every use of a pointer.
Mudflap caches the lookup in the auxiliary data structure

and has an average run-time overhead of 400% compared
to unsafe execution.

Dhurjati and Adve [11] use a fine-grained partitioning of
memory to provide run-time bounds checking for arrays and
strings. They report an overhead of 12% compared to an
unchecked execution.

Ruwase and Lam [33] prevent buffer overflows by intro-
ducing out-of-bound objects for all out-of-bound pointers.
Any pointer derived from an out-of-bound object is bound-
checked before it can be dereferenced. They report a run-
time overhead in the range of 1% — 130%.

Our system represents pointer values by MAddress ob-
jects that use a Java reference to refer to the allocation.
We detect spatial memory errors when the offset of the
MAddress object cannot be mapped to a member of the
referent and temporal errors when the referent is not allo-
cated (data is null) or the referent is marked as deallocated.
Hence, we consider our approach as distinct from object-
based approaches.

8.3 Boehm-Demers-Weiser GC

The Boehm-Demers-Weiss GC [19] is a conservative GC
for C and C++ that can provide temporal safeness. It uses
a mark-sweep algorithm and provides incremental and gen-
erational collection. It works with unmodified C programs
by replacing native memory allocations with GC allocations
and removing free calls completely. Also, it can run in a
leak detection mode that allows ensuring temporal safety.

Like ManagedC, this approach automatically deallocates
memory that is not used anymore. However, the architec-
ture of the two approaches is different: ManagedC executes
C code on a memory-safe runtime via AST interpretation. It
introduces MAddress objects to represent pointers and allo-
cates managed objects, which allows reusing the GC of the
runtime without additional effort.

9. Summary

In this paper we presented ManagedC, a Truffle-based C in-
terpreter with dynamic compilation that can execute C pro-
grams while ensuring spatial as well as temporal safety. By
reusing the memory management of the JVM it was straight-
forward to build a memory-safe C interpreter. Rather than
using native data, ManagedC allocates Java objects on the
Java heap and uses MAddress objects to represent pointers.
ManagedC ensures spatial safety by mapping the offser of an
MAddress object to a member of a Java object and by per-
forming a Java object access. Furthermore, only MAddress
objects that point to a valid managed allocation can be deref-
erenced. Whenever a C application deallocates memory, we
mark it as deallocated to ensure that it is not used anymore.
Thus, we can detect dangling pointers and double dealloca-
tions and can therefore ensure temporal safety. ManagedC is
in average 7% faster than (unsafe) TruffleC. Compared to the
best GCC performance, ManagedC has an average overhead

of 15%. We can achieve this performance because the dy-
namic compiler of the Truffle framework is especially good
at removing the run-time checks that ensure safety.

Acknowledgments

We thank all members of the Virtual Machine Research
Group at Oracle Labs, the Institute for System Software and
the Institute for Networks and Security at the Johannes Ke-
pler University Linz for their valuable feedback on this work
and on this paper. Oracle, Java, and HotSpot are trademarks
of Oracle and/or its affiliates. Other names may be trade-
marks of their respective owners.

References

[1] How Not To Lie With Statistics: The Correct Way To Summa-
rize Benchmark Results. Communications of the ACM, 1986.

[2] C99 Standard: ISO/IEX 9899:TC3. www.open-std.org/jtcl/
sc22/wgld/www/docs/n1256.pdf, 2007.

[3] Clang/LLVM. http://clang.1llvm.org/, 2014.
[4] GCC (GNU C Compiler). http://gcc.gnu.org/, 2014.

[5] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient Detection
of All Pointer and Array Access Errors. SIGPLAN Not., 1994.
. URL http://doi.acm.org/10.1145/773473.178446.

[6] W. Chuang, S. Narayanasamy, and B. Calder. Accelerating
Meta Data Checks for Software Correctness and Security.
Journal of Instruction-Level Parallelism, 2007.

[7] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks. In Usenix Security, 1998.

[8] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer
overflows: attacks and defenses for the vulnerability of the
decade. In DARPA Information Survivability Conference and
Exposition., 2000. .

[9] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure vir-
tual architecture: A safe execution environment for commod-
ity operating systems. In ACM SIGOPS Operating Systems
Review, 2007.

[10] J. Devietti, C. Blundell, M. M. Martin, and S. Zdancewic.
Hardbound: architectural support for spatial safety of the C
programming language. ACM SIGOPS Operating Systems
Review, 2008.

[11] D. Dhurjati and V. Adve. Backwards-compatible array bounds
checking for C with very low overhead. In Proceedings of the
28th international conference on Software engineering, 2006.

[12] G. Duboscq, T. Wiirthinger, L. Stadler, C. Wimmer, D. Simon,
and H. Mossenbock. An Intermediate Representation for
Speculative Optimizations in a Dynamic Compiler. VMIL
’13, 2013. . URL http://doi.acm.org/10.1145/2542142.
2542143.

[13] G. Duboscq, T. Wiirthinger, and H. Mossenbock. Speculation
Without Regret: Reducing Deoptimization Meta-data in the
Graal Compiler. PPPJ 14, 2014. . URL http://doi.acm.
org/10.1145/2647508.2647521.

www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://clang.llvm.org/
http://gcc.gnu.org/
http://doi.acm.org/10.1145/773473.178446
http://doi.acm.org/10.1145/2542142.2542143
http://doi.acm.org/10.1145/2542142.2542143
http://doi.acm.org/10.1145/2647508.2647521
http://doi.acm.org/10.1145/2647508.2647521

[14] E. C. Eigler. Mudflap: Pointer Use Checking for C/C+. In
GCC Developers Summit. Citeseer, 2003.

[15] M. Grimmer. High-Performance Language Interoperability in
Multi-Language Runtimes. SPLASH ’14, 2014.

[16] M. Grimmer, M. Rigger, R. Schatz, L. Stadler, and
H. Mossenbock. TruffleC: Dynamic Execution of C on a
Java Virtual Machine. PPPJ *14, 2014. URL http:
//dx.doi.org/10.1145/2647508.2647528.

[17] M. Grimmer, T. Wiirthinger, A. W68, and H. Mossenbock.
An Efficient Approach for Accessing C Data Structures from
JavaScript. ICOOOLPS ’14, 2014. . URL http://dx.doi.
org/10.1145/2633301.2633302.

[18] M. Grimmer, C. Seaton, T. Wuerthinger, and H. Moessen-
boeck. Dynamically Composing Languages in a Modu-
lar Way: Supporting C Extensions for Dynamic Languages.
MODULARITY ’15, 2015.

[19] Hans-J. Boehm. A garbage collector for C and C++. http:
//www.hboehm. info/gc/, 2015.

[20] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In In Proc. of the Winter 1992
USENIX Conference. Citeseer, 1991.

[21] U. Holzle, C. Chambers, and D. Ungar. Debugging Optimized
Code with Dynamic Deoptimization. SIGPLAN Not. . URL
http://doi.acm.org/10.1145/143103.143114.

[22] U. Holzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with polymor-
phic inline caches. In ECOOP’91. Springer, 1991. . URL
http://dx.doi.org/10.1007/BFb0057013.

[23] R. W. Jones and P. H. Kelly. Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs. In AADE-
BUG. Citeseer, 1997.

[24] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
SoftBound: Highly Compatible and Complete Spatial Mem-
ory Safety for C. PLDI "09, 2009. . URL http://doi.acm.
org/10.1145/1542476 . 1542504.

[25] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
CETS: Compiler Enforced Temporal Safety for C. ISMM
’10, 2010. . URL http://doi.acm.org/10.1145/1806651.
1806657.

[26] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Watch-
dog: Hardware for Safe and Secure Manual Memory Man-
agement and Full Memory Safety. ISCA ’12. IEEE Computer
Society, 2012. URL http://dl.acm.org/citation.cfm?id=
2337159.2337181.

[27] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic.
WatchdogLite: Hardware-Accelerated Compiler-
Based Pointer Checking. CGO ’14, 2014. . URL
http://doi.acm.org/10.1145/2544137.2544147.

[28] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-
safe Retrofitting of Legacy Code. POPL ’02, 2002. . URL
http://doi.acm.org/10.1145/503272.503286.

[29] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-safe Retrofitting of Legacy Soft-
ware. ACM Trans. Program. Lang. Syst., May 2005. . URL
http://doi.acm.org/10.1145/1065887.1065892.

[30] N. Nethercote and J. Seward. How to shadow every byte of
memory used by a program. In Proceedings of VEE 07, 2007.

[31] Oracle. OpenJDK: Graal project. http://openjdk.java.
net/projects/graal/, 2013.

[32] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-
memory for detecting memory leaks and memory corruption
during production runs. In HPCA 2005. IEEE, 2005.

[33] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer
Overflow Detector. In NDSS, 2004.

[34] C. Seaton, M. L. Van De Vanter, and M. Haupt. Debugging at
Full Speed. In DYLA’14, 2014.

[35] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov.
AddressSanitizer: A Fast Address Sanity Checker. In USENIX
Annual Technical Conference, 2012.

[36] J. Seward and N. Nethercote. Using Valgrind to Detect Un-
defined Value Errors with Bit-Precision. In USENIX Annual
Technical Conference, General Track, 2005.

[37] M. S. Simpson and R. K. Barua. MemSafe: ensuring the
spatial and temporal memory safety of Cat runtime. Software:
Practice and Experience, 2013. . URL http://dx.doi.org/
10.1002/spe.2105.

[38] L. Stadler, G. Duboscq, H. Mossenbock, T. Wiirthinger,
and D. Simon. An Experimental Study of the Influence
of Dynamic Compiler Optimizations on Scala Performance.
SCALA ’13, 2013. . URL http://doi.acm.org/10.1145/
2489837 .2489846.

[39] L. Stadler, T. Wiirthinger, and H. Mossenbock. Partial Escape
Analysis and Scalar Replacement for Java. CGO ’14, 2014. .
URL http://doi.acm.org/10.1145/2544137.2544157.

[40] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal
War in Memory. In Security and Privacy (SP), 2013 IEEE
Symposium on, 2013. .

[41] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic.
Memtracker: Efficient and programmable support for memory
access monitoring and debugging. In HPCA 2007. 1EEE,
2007.

[42] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A
First Step Towards Automated Detection of Buffer Overrun
Vulnerabilities. In NDSS, 2000.

[43] A. WoB, C. Wirth, D. Bonetta, C. Seaton, C. Humer, and
H. Mossenbock. An Object Storage Model for the Truffle
Language Implementation Framework. PPPJ ’14, 2014.
URL http://dx.doi.org/10.1145/2647508.2647517.

[44] T. Wiirthinger, C. Wimmer, and H. Mossenbock. Array
Bounds Check Elimination for the Java HotSpot Client Com-
piler. PPPJ *07,2007. . URL http://doi.acm.org/10.1145/
1294325.1294343.

[45] T. Wiirthinger, A. W68, L. Stadler, G. Duboscq, D. Simon,
and C. Wimmer. Self-optimizing AST Interpreters. DLS
’12, 2012. . URL http://doi.acm.org/10.1145/2384577.
2384587.

[46] T. Wiirthinger, C. Wimmer, A. W68, L. Stadler, G. Duboscq,

C. Humer, G. Richards, D. Simon, and M. Wolczko. One VM
to rule them all. In SPLASH’13, 2013.

http://dx.doi.org/10.1145/2647508.2647528
http://dx.doi.org/10.1145/2647508.2647528
http://dx.doi.org/10.1145/2633301.2633302
http://dx.doi.org/10.1145/2633301.2633302
http://www.hboehm.info/gc/
http://www.hboehm.info/gc/
http://doi.acm.org/10.1145/143103.143114
http://dx.doi.org/10.1007/BFb0057013
http://doi.acm.org/10.1145/1542476.1542504
http://doi.acm.org/10.1145/1542476.1542504
http://doi.acm.org/10.1145/1806651.1806657
http://doi.acm.org/10.1145/1806651.1806657
http://dl.acm.org/citation.cfm?id=2337159.2337181
http://dl.acm.org/citation.cfm?id=2337159.2337181
http://doi.acm.org/10.1145/2544137.2544147
http://doi.acm.org/10.1145/503272.503286
http://doi.acm.org/10.1145/1065887.1065892
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/
http://dx.doi.org/10.1002/spe.2105
http://dx.doi.org/10.1002/spe.2105
http://doi.acm.org/10.1145/2489837.2489846
http://doi.acm.org/10.1145/2489837.2489846
http://doi.acm.org/10.1145/2544137.2544157
http://dx.doi.org/10.1145/2647508.2647517
http://doi.acm.org/10.1145/1294325.1294343
http://doi.acm.org/10.1145/1294325.1294343
http://doi.acm.org/10.1145/2384577.2384587
http://doi.acm.org/10.1145/2384577.2384587

	Introduction
	System Overview
	Truffle and Graal
	TruffleC
	Memory Safety

	Managed Addresses
	Address Computation and Pointer Arithmetic
	Compliance With the C99 Standard

	Object Access: Spatial and Temporal Safety
	Well-Defined Access Operations
	Access Operations in Relaxed Mode
	Allocations Without Type Information
	Undefined Object Accesses

	Resolving Access Operations at Run Time
	Allocations and Deallocations

	Applications, Trade-offs, and Future Work
	Reaction to Undefined Operations or Memory Errors
	Performance Evaluation
	Benchmarks
	Experimental Setup
	Discussion

	Related Work
	Pointer-based Approaches
	Object-based Approaches
	Boehm-Demers-Weiser GC

	Summary

