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Traditional Development Tools

• A different runtime for each language that you use

• Using more than one language in a program is hard

• Languages are fixed by the original developer

• Developing new languages is hard
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What Do We Want?

• We want a single runtime for multiple programming languages

• We want to use more than one language in the same
program, the same file, even the same line

• We want to be able to extend languages as easily as we can
define new functions

• We want to easily define new languages



Katahdin

• The syntax and semantics can be modified by the running
program

• Can add new constructs to the language, or define entire new
languages

• Composing the definitions for two languages allows you to
use those two languages at the same time

A programming language and an interpreter
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How Does Katahdin Work?

• How is the grammar expressed?

• How is the grammar parsed?

• How are semantics expressed?

• How do we create language definition modules?

Take traditional development techniques and make
them dynamic, runtime operations
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Expressing Grammar in Katahdin

• Based on Parsing Expression Grammars (PEGs)

• Described by Bryan Ford of MIT (2004) and related to the work
of Alexander Birman (1970)

• Looks and feels very much like a regular expression or context-
free grammar

• Expressed using Backus-Naur Form (BNF)

• My own extensions to better support modular grammars



Example: Modulo Operator

class ModExpression : Expression {
    pattern {
        option leftRecursive;
        a:Expression "%" b:Expression
    }
}



Katahdin’s Parsing Algorithm

• Based on packrat parsing

• Described by Bryan Ford (2002)

• Basically a top-down, recursive-descent parser that backtracks

• Sacrifices memory for speed − a linear time operation

• Other projects successfully applying packrat parsers to PEGs,
but not from a mutable grammar, as Katahdin is



Expressing Semantics in Katahdin

• Semantics are the meaning of each construct in the language

• Express semantics as code that is directly executed

• Allows you to express one language in terms of another, or in
terms of itself

• Code is written in methods in the construct’s class statement



Example: Modulo Operator

class ModExpression : Expression {
    pattern {
        option leftRecursive;
        a:Expression "%" b:Expression
    }

    method Get() {
        a = this.a.Get...();
        b = this.b.Get...();
        return a - (b * (a / b));
    }
}



Language Definition Modules

• If you define all the constructs in a language like this, you have
a complete definition of the syntax and semantics of the
language

• Store constructs in a module to be conveniently loaded

• Katahdin can automatically load a module based on file
extension

• Users can explicitly load a module to merge with the current
grammar



Results

• I have achieved the goal of making a programming language where
the syntax and semantics are mutable at runtime

• My implementation of Katahdin is mature and stable

• Implemented proof-of-concept language definitions for SQL,
Python, Fortran

• A paper describing the theory and implementation has been
submitted for publication at GPCE 2007

• Error handling and performance need to be addressed − there is
research that this work can be based on



Demonstration, Questions


