
A Programming Language Where the Syntax and
Semantics Are Mutable at Runtime

Chris Seaton

Katahdin

Traditional Development Tools

• A different runtime for each language that you use

• Using more than one language in a program is hard

• Languages are fixed by the original developer

• Developing new languages is hard

Fortran Compiler

Platform

Fortran
Program

Python
Program

Python Interpreter

What Do We Want?

• We want a single runtime for multiple programming languages

• We want to use more than one language in the same
program, the same file, even the same line

• We want to be able to extend languages as easily as we can
define new functions

• We want to easily define new languages

Katahdin

• The syntax and semantics can be modified by the running
program

• Can add new constructs to the language, or define entire new
languages

• Composing the definitions for two languages allows you to
use those two languages at the same time

A programming language and an interpreter

Katahdin Runtime

Platform

Fortran
Program

Python
Program

Fortran Python

Fortran /
Python

Program

How Does Katahdin Work?

• How is the grammar expressed?

• How is the grammar parsed?

• How are semantics expressed?

• How do we create language definition modules?

Take traditional development techniques and make
them dynamic, runtime operations

Runtime

Compiler

Parser Generator

Grammar

Runtime

Compiler

Parser Generator

Grammar

Expressing Grammar in Katahdin

• Based on Parsing Expression Grammars (PEGs)

• Described by Bryan Ford of MIT (2004) and related to the work
of Alexander Birman (1970)

• Looks and feels very much like a regular expression or context-
free grammar

• Expressed using Backus-Naur Form (BNF)

• My own extensions to better support modular grammars

Example: Modulo Operator

class ModExpression : Expression {
 pattern {
 option leftRecursive;
 a:Expression "%" b:Expression
 }
}

Katahdin’s Parsing Algorithm

• Based on packrat parsing

• Described by Bryan Ford (2002)

• Basically a top-down, recursive-descent parser that backtracks

• Sacrifices memory for speed − a linear time operation

• Other projects successfully applying packrat parsers to PEGs,
but not from a mutable grammar, as Katahdin is

Expressing Semantics in Katahdin

• Semantics are the meaning of each construct in the language

• Express semantics as code that is directly executed

• Allows you to express one language in terms of another, or in
terms of itself

• Code is written in methods in the construct’s class statement

Example: Modulo Operator

class ModExpression : Expression {
 pattern {
 option leftRecursive;
 a:Expression "%" b:Expression
 }

 method Get() {
 a = this.a.Get...();
 b = this.b.Get...();
 return a - (b * (a / b));
 }
}

Language Definition Modules

• If you define all the constructs in a language like this, you have
a complete definition of the syntax and semantics of the
language

• Store constructs in a module to be conveniently loaded

• Katahdin can automatically load a module based on file
extension

• Users can explicitly load a module to merge with the current
grammar

Results

• I have achieved the goal of making a programming language where
the syntax and semantics are mutable at runtime

• My implementation of Katahdin is mature and stable

• Implemented proof-of-concept language definitions for SQL,
Python, Fortran

• A paper describing the theory and implementation has been
submitted for publication at GPCE 2007

• Error handling and performance need to be addressed − there is
research that this work can be based on

Demonstration, Questions

