
Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 1

One VM to Rule Them All

Christian Wimmer, Chris Seaton

VM Research Group, Oracle Labs

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 3

The following is intended to provide some insight into a line of research in
Oracle Labs. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or functionality
described in connection with any Oracle product or service remains at the sole
discretion of Oracle. Any views expressed in this presentation are my own and
do not necessarily reflect the views of Oracle.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 4

One Language to Rule Them All?
Let’s ask Google…

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 5

One Language to Rule Them All?
Let’s ask Stack Overflow…

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 6

“Write Your Own Language”

Prototype a new language

Parser and language work to build
syntax tree (AST), AST Interpreter

Write a “real” VM

In C/C++, still using AST interpreter,
spend a lot of time implementing
runtime system, GC, …

People start using it

Define a bytecode format and
write bytecode interpreter

People complain about performance

Write a JIT compiler
Improve the garbage collector

Performance is still bad

Prototype a new language in Java

Parser and language work to build
syntax tree (AST)
Execute using AST interpreter

People start using it

And it is already fast

Current situation How it should be

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 7

@Specialization(

	
 	
 	
 rewriteOn=ArithmeticException.class)	

int	
 add(int	
 l,	
 int	
 r)	
 {	

	
 	
 return	
 Math.addExact(l,	
 r);	

}	

	

@Specialization	

double	
 add(double	
 l,	
 double	
 r)	
 {	

	
 	
 return	
 l	
 +	
 r;	

}	

	

@Specialization(guards	
 =	
 "isString")	

String	
 doString(Object	
 l,	
 Object	
 r)	
 {	

	
 	
 return	
 l.toString()	
 +	
 r.toString();	

}	

Truffle Requirements

L1:	
 decl	
 rax	

jz	
 L2	

movl	
 rcx,	
 rdx[16+4*rax]	

cvtsi2sd	
 xmm1,	
 rcx	

addsd	
 xmm0,	
 xmm1	

jmp	
 L1	

L2:	

+
Generality

Ruby, JavaScript,
Python, R, J,
Java, Groovy,

Clojure, Scala ...

function	
 f(a,	
 n)	
 {	

	
 	
 var	
 x	
 =	
 0;	

	
 	
 while	
 (n-­‐-­‐	
 >	
 0)	
 {	

	
 	
 	
 	
 x	
 =	
 x	
 +	
 a[n];	

	
 	
 }	

	
 	
 return	
 x;	

}	

Simplicity

+
Performance

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 8

System Structure

Low-footprint VM, also
suitable for embedding

Common API between
language implementation
and optimization system

Language agnostic
dynamic compiler

Your language here!

Integrate with Java
applications Substrate VM

Truffle Graal

Ruby

JavaScript Python

R

Graal VM

…

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 9

AST Interpreter
Uninitialized Nodes

Compiled Code

Automatic Partial
Evaluation

Truffle Approach

Node Rewriting
 for Type Feedback

AST Interpreter
Rewritten Nodes

Syntax tree nodes are “stable”

Aggressive constant folding, method
inlining, escape analysis

Deoptimize compiled code on tree rewrite

Eliminate dynamic type checks

Eliminate boxing of primitive values

AST Inlining

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 10

More Details on Truffle
Accepted for Onward! 2013, October 26-31 2013, Indianapolis, IN

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 11

Ruby Prototype: High Performance

Fastest Ruby
implementation …

… for the few
benchmarks that

we looked at

Substrate VM

Truffle Graal

Ruby

Graal VM

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 12

Ruby Prototype: Low Footprint

Startup time
(“Hello World”)

comparable to MRI

Substrate VM

Truffle Graal

Ruby

Graal VM

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 13

Ruby Prototype: Completeness

§  RubySpec
§  A library of executable assertions that

covers the language, core library and
standard library

§  This is the defacto Ruby spec
§  Gives us a quantifiable result for how much

of Ruby we implement correctly

Over 45% of
RubySpec

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 14

Completeness

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 15

Completeness: Informally

Charles Nutter: ‘So You Want to Optimize Ruby’ http://blog.headius.com/2012/10/so-you-want-to-optimize-ruby.html

Language Feature Implemented Notes

Fixnum to Bignum promotion ✓

Support for floating point ✓

Closures ✓

Bindings and eval ✓

callcc and Continuation ✓ Very limited support, the same as JRuby

Fibers ✓ Slightly limited support, the same as JRuby

Frame local variables ✓

C extensions

Ruby 1.9 encoding ✓

Garbage collection ✓

Concurrency and parallelism ✓ We currently use a GIL

Tracing and debugging ✓

ObjectSpace ✓

Method invalidation ✓

Constant invalidation ✓

Ruby on Rails

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 16

Completeness: More formally via RubySpec
Running language tests

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Topaz RubyTruffle JRuby

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 17

Low Footprint

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 18

Ahead-of-Time
Compilation

Static Analysis

Substrate VM Execution Model

Substrate VM

Java Application

JDK

Reachable methods,
fields, and classes

Initial Heap

Machine Code

OS

All Java classes from
application, JDK,
and Substrate VM

Application running
without compilation

or class loading

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 19

Startup Performance
Running "Hello World"

Execution time:	

Memory footprint:	

time	
 -­‐f	
 "%e"	

time	
 -­‐f	
 "%M"	

13

35
3

68
8

14
0

200

400

600

800

MRI JRuby Truffle on
JVM

 Truffle on
SVM

[msec] Execution Time

5

35

53

9

0

10

20

30

40

50

60

MRI JRuby Truffle on
JVM

 Truffle on
SVM

[MByte] Memory Footprint

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 20

High Performance

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 21

Why is Ruby Slow?

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 22

Why is Ruby Slow?

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a
execute b
check that b is a Float
check that the negate method in Float has not changed
calculate negation
check the result of that is a Float
execute b
check that b is a Float
check that the power method in Float has not changed
calculate power
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
execute c
check that c is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that the division method in Float has not changed
calculate division

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 23

Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a
execute b
check that b is a Float
check that the negate method in Float has not changed
calculate negation
check the result of that is a Float
execute b
check that b is a Float
check that the power method in Float has not changed
calculate power
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
execute c
check that c is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that the division method in Float has not changed
calculate division

+

- /

b sqrt *

... 2 a

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 24

Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a
execute b
check that b is a Float
check that the negate method in Float has not changed
calculate negation
check the result of that is a Float
execute b
check that b is a Float
check that the power method in Float has not changed
calculate power
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
execute c
check that c is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that the division method in Float has not changed
calculate division

+

- /

b sqrt *

... 2 a

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 25

Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a
execute b
check that b is a Float
check that the negate method in Float has not changed
calculate negation
check the result of that is a Float
execute b
check that b is a Float
check that the power method in Float has not changed
calculate power
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
execute c
check that c is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that the division method in Float has not changed
calculate division

+

- /

b sqrt *

... 2 a

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 26

Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a
execute b
check that b is a Float
check that the negate method in Float has not changed
calculate negation
check the result of that is a Float
execute b
check that b is a Float
check that the power method in Float has not changed
calculate power
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
execute c
check that c is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that the division method in Float has not changed
calculate division

+

- /

b sqrt *

... 2 a

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 27

Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a
execute b
check that b is a Float
check that the negate method in Float has not changed
calculate negation
check the result of that is a Float
execute b
check that b is a Float
check that the power method in Float has not changed
calculate power
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
execute c
check that c is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that the division method in Float has not changed
calculate division

+

- /

b sqrt *

... 2 a

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 28

Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a
execute b
check that b is a Float
check that the negate method in Float has not changed
calculate negation
check the result of that is a Float
execute b
check that b is a Float
check that the power method in Float has not changed
calculate power
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
execute c
check that c is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that the division method in Float has not changed
calculate division

+

- /

b sqrt *
... 2 a

+

- /

b *
... 2 a

sqrt

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 29

Improving Performance Using Truffle

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b
check that the negate method in Float has not changed
calculate negation
execute b
check that the power method in Float has not changed
calculate power
execute a
check that the multiply method in Float has not changed
calculate multiplication
execute c
check that the multiply method in Float has not changed
calculate multiplication
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
execute a
check that the multiply method in Float has not changed
calculate multiplication
check that the division method in Float has not changed
calculate division

execute b
check that b is a Float
check that the negate method in Float has not changed
calculate negation
check the result of that is a Float
execute b
check that b is a Float
check that the power method in Float has not changed
calculate power
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
execute c
check that c is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
check the result of that is a Float
execute a
check that a is a Float
check that the multiply method in Float has not changed
calculate multiplication
check the result of that is a Float
check that the division method in Float has not changed
calculate division

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 30

Improving Performance Using Graal

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b
check that the negate method in Float has not changed
calculate negation
execute b
check that the power method in Float has not changed
calculate power
execute a
check that the multiply method in Float has not changed
calculate multiplication
execute c
check that the multiply method in Float has not changed
calculate multiplication
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
execute a
check that the multiply method in Float has not changed
calculate multiplication
check that the division method in Float has not changed
calculate division

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 31

Improving Performance Using Graal

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b
check that the negate method in Float has not changed
calculate negation
execute b
check that the power method in Float has not changed
calculate power
execute a
check that the multiply method in Float has not changed
calculate multiplication
execute c
check that the multiply method in Float has not changed
calculate multiplication
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
execute a
check that the multiply method in Float has not changed
calculate multiplication
check that the division method in Float has not changed
calculate division

class Float

⚑ modified?

module Math

⚑ modified?

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 32

Improving Performance Using Graal

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b
check that the negate method in Float has not changed
calculate negation
execute b
check that the power method in Float has not changed
calculate power
execute a
check that the multiply method in Float has not changed
calculate multiplication
execute c
check that the multiply method in Float has not changed
calculate multiplication
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
execute a
check that the multiply method in Float has not changed
calculate multiplication
check that the division method in Float has not changed
calculate division

class Float

⚑ modified?

module Math

⚑ modified?

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 33

Improving Performance Using Graal

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b
check that the negate method in Float has not changed
calculate negation
execute b
check that the power method in Float has not changed
calculate power
execute a
check that the multiply method in Float has not changed
calculate multiplication
execute c
check that the multiply method in Float has not changed
calculate multiplication
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
execute a
check that the multiply method in Float has not changed
calculate multiplication
check that the division method in Float has not changed
calculate division

class Float

⚑ modified?

module Math

⚑ modified?

java object InstalledCode

.invalidate()

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 34

Improving Performance Using Graal

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b
check that the negate method in Float has not changed
calculate negation
execute b
check that the power method in Float has not changed
calculate power
execute a
check that the multiply method in Float has not changed
calculate multiplication
execute c
check that the multiply method in Float has not changed
calculate multiplication
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
execute a
check that the multiply method in Float has not changed
calculate multiplication
check that the division method in Float has not changed
calculate division

class Float

⚑ modified?

module Math

⚑ modified?

java object InstalledCode

.invalidate()

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 35

Improving Performance Using Graal

unmodified = new Assumption();

unmodified.check();

unmodified.invalidate();

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 36

Improving Performance Using Graal

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b
calculate negation
execute b
calculate power
execute a
calculate multiplication
execute c
calculate multiplication
calculate sqrt
execute a
calculate multiplication
calculate division

execute b
check that the negate method in Float has not changed
calculate negation
execute b
check that the power method in Float has not changed
calculate power
execute a
check that the multiply method in Float has not changed
calculate multiplication
execute c
check that the multiply method in Float has not changed
calculate multiplication
check that Math has not changed
check that the sqrt method in Math has not changed
calculate sqrt
execute a
check that the multiply method in Float has not changed
calculate multiplication
check that the division method in Float has not changed
calculate division

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 37

Improving Performance

-b + (Math.sqrt(b**2 - 4*a*c)) / 2*a

execute b
calculate negation
execute b
calculate power
execute a
calculate multiplication
execute c
calculate multiplication
calculate sqrt
execute a
calculate multiplication
calculate division

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 38

Peak Performance

0"

20"

40"

60"

80"

100"

120"

140"

1.8
.7*
p3
74
"

1.9
.3*
p4
48
"

2.0
.0*
p2
47
"

top
az*
da
ily
"

jru
by
*1.
7.4
*se
rve
r*in
vo
ke
dy
na
mi
c"

tru
ffle
*se
rve
r*n
og
raa
l"

tru
ffle
*se
rve
r"

Sp
ee
du

p&
Speedup&Rela*ve&to&1.8.72p374&

Fannkuch"

N*Body"

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 39

Peak Performance

0"

1"

2"

3"

4"

5"

6"

7"

jru
by
/1.
7.4
/se
rve
r/in
ter
pre
ter
"

jru
by
/1.
7.4
/se
rve
r"

jru
by
/1.
7.4
/se
rve
r/in
vo
ke
dy
na
mi
c"

top
az/
de
v"

tru
ffle
/se
rve
r/n
og
raa
l"

tru
ffle
/se
rve
r"

Sp
ee
du

p&
Speedup&Rela*ve&to&jruby21.7.42server2invokedynamic&

Fannkuch"

N/Body"

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 40

Simplicity

§  One intern working for five months on the Ruby implementation
§  New to Truffle, Graal and Ruby

§  Written using Eclipse
§  Debugged as a normal Java program using the server compiler
§  Run using Graal for testing and performance numbers

§  No mention in the implementation of bytecode, classloaders, assembly,
system calls, OSR

§  One very minor use of Unsafe, one very minor use of reflection

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 41

Oracle Labs
Laurent Daynès
Michael Haupt
Peter Kessler
Christos Kotselidis
David Leibs
Roland Schatz
Chris Seaton
Doug Simon
Michael Van De Vanter
Christian Wimmer
Christian Wirth
Mario Wolczko
Thomas Würthinger
Laura Hill (Manager)

JKU Linz
Gilles Duboscq
Matthias Grimmer
Christian Häubl
Josef Haider
Christian Humer
Christian Huber
Manuel Rigger
Lukas Stadler
Bernhard Urban
Andreas Wöß

Prof. Hanspeter Mössenböck

Acknowledgments

Oracle Labs Interns
Danilo Ansaloni
Daniele Bonetta
Shams Imam
Stephen Kell
Helena Kotthaus
Gregor Richards
Rifat Shariyar
Codrut Stancu
Wei Zhang

Purdue University
Tomas Kalibera"
Floreal Morandat"
Petr Maj
Prof. Jan Vitek

University of California, Irvine

University of Dortmund

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 42

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 43

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 44

Truffle Approach (Details)

U

U U

U

U I

I I

G

G I

I I

G

G

AST Rewriting
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Unin it ia lized Integer

Generic

DoubleString

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

AST Rewriting to Update
Profiling Feedback

Recompilation using
Partial Evaluation

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 45

System Structure (Details)

Guest Language Application

OS

AOT Optimization: using Graal for static analysis and AOT compilation

Language Parser AST InterpreterGuest Language Implementation

Truffle API Framework for Node Rewriting

Truffle Optimizer Partial Evaluation using Graal

VM Runtime Services Garbage Collector Graal Compiler
Stack Walking Deoptimization

Hosted on any Java VM

Hosted on Graal VM

(slow, for guest language
development and debugging only)

(fast, for integration of guest language
code with existing Java applications)

