ORACLE

Turning the JVM into a Polyglot VM with Graal

Chris Seaton
Research Manager
Oracle Labs

April 2017

ORACLE

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development, release, and
timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Programming languages

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

3\

|=| stackoverflow

Stack Overflow is a question and answer site for professional and enthusiast programmers. It's 100% free, no
registration required.

Why can’t there be an “ultimate” programming language?

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

3\

|=| stackoverflow

Stack Overflow is a question and answer site for professional and enthusiast programmers. It's 100% free, no
registration required.

Why can’t there be an “ultimate” programming language?

closed as not constructive by Tim, Bo Persson, Devon_C_Miller, Mark,
Graviton Jan 17 at 5:58

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

JavaScript: One language to rule them all | VentureBeat
n venturebeat.com/2011/.. /javascript-one-language-to-rule-them-_.. ~

by Peter Yared - in 23 Google+ circles

Jul 29, 2011 - Why code in two different scripting languages, one on the client
and one on the server? It's time for one language to rule them all. Peter
Yared ...

[PDF] Python: One Script (Language) to rule them all - lan Darwin
www.darwinsys.com/python/python4unix.pdf ~

Another Language? » Python was invented in 1991 by Guido van. Rossum. = Named
after the comedy troupe, not the snake. » Simple. - They all say that!

Q & Stuff: One Language to Rule Them All - Java
gstuff.blogspot.com/2005/10/one-language-to-rule-them-all-java.himl ~

Oct 10, 2005 - One Language to Rule Them All - Java. For a long time I'd been
hoping to add a scripting language to LibQ, to use in any of my (or other ...

Dart : one language to rule them all - MixIT 2013 - Slideshare
frslideshare.net/sdeleuze/dart-mixit2013en ~

DartSébastien Deleuze - @sdeleuzeMix-IT 20130ne language to rule them all ...

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

ORACLE

Computer Language Benchmarks Game

1000 -

100 -

10 -

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Computer Language Benchmarks Game

1000 - @

| o
[Blap) & python

mean

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 9

Current situation

Prototype a new language

Parser and language work to build
syntax tree (AST), AST Interpreter

Write a “real” VM

In C/C++, still using AST interpreter,
spend a lot of time implementing
runtime system, GC, ...

People start using it

People complain about performance

Define a bytecode format and
write bytecode interpreter

Performance is still bad

Write a JIT compiler
Improve the garbage collector

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Current situation How it should be

Prototype a new language

Parser and language work to build
syntax tree (AST), AST Interpreter

Write a “real” VM

In C/C++, still using AST interpreter,
spend a lot of time implementing
runtime system, GC, ...

People start using it

People complain about performance

Define a bytecode format and
write bytecode interpreter

Performance is still bad

Write a JIT compiler
Improve the garbage collector

ORACLE

Prototype a new language in Java

Parser and language work to build
syntax tree (AST)
Execute using AST interpreter

People start using it

. And it is already fast

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

11

The GraalVM concept

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

The Ruby Logo is Copyright (c) 2006, Yukihiro Matsumoto. It is licensed under the terms of the Creative Commons Attribution-ShareAlike 2.5 agreement
JS Logo Copyright (c) 2011 Christopher Williams <chris@iterativedesigns.com>, MIT licence
You can distribute the R logo under the terms of the Creative Commons Attribution-ShareAlike 4.0 International license (CC-BY-SA 4.0) or (at your option) the GNU General Public License version 2 (GPL-2).

)
<_

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 13

ORACLE

A

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

R

14

ORACLE

A

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

‘R

15

ORACLE

o

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

R

16

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

17

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

18

How we do polyglot in GraalVM

ORACLE

Truffle::Interop.eval('application/language', source)
value = Truffle::Interop.import(name)

Truffle::Interop.export(name)

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Interop.eval('application/language', source)
value = Interop.import(name)

Interop.export(name)

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

puts Truffle::Interop.eval('application/javascript', '14 + 2')
16

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

JavaScript

4

puts Truffle::Interop.eval('application/javascript', '14 + 2')
Ruby # 16

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Truffle::Interop.eval('application/javascript’,
function add(a, b) {
return a + b;

}

Interop.export('add', add.bind(this));
II)

add = Truffle::Interop.import('add")

puts add.call(14, 2)
16

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Truffle::Interop.eval('application/javascript', '

function add(a, b) {
return a + b;

} > JavaScript

Interop.export('add', add.bind(this)); ./
Ruby —< "
add = Truffle::Interop.import('add")

puts add.call(14, 2)
16

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

function add(a, b) {
return a + b;

puts add(14, 2)
16

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

function add(a, b) {
JavaScript return a + b;
¥

puts add(14, 2)
Ruby # 16

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

function Point(x, y) {
this.x = X;
this.y = vy;

}

function random_points(n) {
points = [];
for (i = 0; i < n; i++) {
points[i] = new Point(Math.random(), Math.random())

}

return points;

}

points = random_points(100)

point = points[0]
puts point.x, point.y
0.642460680339328

0.116305386298814

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

function Point(x, y) {
this.x = X;
this.y = vy;

}

JS function random_points(n) {
points = [];
for (i = 0; i < n; i++) {
points[i] = new Point(Math.random(), Math.random())

}

return points;

}

Vo

points = random_points(100)

Ruby — point = points[0]
puts point.x, point.y

0.642460680339328
_ # 0.116305386298814

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Performance

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

ORACLE

def clamp(num, min, max)
[min, num, max].sort[1]
end

def cmyk_to_rgb(c, m, y, k)
Hash[{
r: (65535 - (c % (255 - k) + (k << 8))) >> 8,
g: (65535 - (m *x (255 - k) + (k << 8))) >> 8,
b: (65535 — (y % (255 — k) + (k << 8))) >> 8
y.map { |k, v| [k, clamp(v, @, 255)] }]
end

benchmark do

cmyk_to_rgb(rand(255), rand(255), rand(255), rand(255))
end

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Warms up and then
reports iterations per
second

ORACLE

def clamp(num, min, max)
[min, num, max].sort[1]

end Random inputs stop the

whole thing being totally
optimised away
def cmyk_to_rgb(c, m, y, k)

Hash[{
r: (65535 - (c % (255 - k) + (k << 8))) >> 8,
g: (65535 - (m *x (255 - k) + (k << 8))) >> 8,
b: (65535 — (y % (255 — k) + (k << 8))) >> 8
y.map { |k, v| [k, clamp(v, @, 255)] }]
end

benchmark do

cmyk_to_rgb(rand(255), rand(255), rand(255), rand(255))
end

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

clamp in Pure Ruby

10000000
9000000
8000000
7000000
6000000
5000000
4000000

Operations Per Second

3000000
2000000
1000000

0

ORACLE

GraalVM JRuby+invokedynamic Ruby

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

clamp in Pure Ruby

10000000

9000000 —

8000000
S 7000000
o 0000000 This is what GraalVM is giving you for
g 2000000 ~— Ruby before we even start talking about
g 00000 JavaScript
2 3000000
@)

2000000

1000000 —

; B —
GraalVM JRuby+invokedynamic Ruby

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

ORACLE

require 'v8'
context = V8::Context.new

$clamp = context.eval("
function clamp(num, min, max) {
if (num < min) {
return min;
} else if (num > max) {
return max;
} else {
return num;
}
}
clamp;

II)

def cmyk_to_rgb(c, m, y, k)
Hash [{
r: (65535 - (c *x (255 - k) + (k << 8))
g: (65535 - (m % (255 - k) + (k << 8))
b: (65535 - (y * (255 - k) + (k << 8))
Y.map { |k, v| [k, $clamp.call(v, @, 255
end

) >> 8
) >>
) >>
)] }]

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

require 'v8'

context = V8::Context.new Not only have we rewritten
in JavaScript, but the
$clamp = context.eval(" JavaScript code is simpler
function clamp(num, min, max) { than the Ruby

if (num < min) {
return min;
} else if (num > max) {
return max;
} else {
return num;
}
}
clamp;

II)

def cmyk_to_rgb(c, m, y, k)
Hash [{
r: (65535 - (c *x (255 - k) + (k << 8))
g: (65535 - (m % (255 - k) + (k << 8))
b: (65535 - (y * (255 - k) + (k << 8))
Y.map { |k, v| [k, $clamp.call(v, @, 255
end

) >> 8
) >>
) >>
)] }]

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

ORACLE

clamp in Ruby and JavaScript with V8

350000
300000
250000
200000
150000

100000

Operations Per Second

50000

Ruby (just Ruby) Ruby (Ruby + JS with V8)

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

require 'rhino’

context = Rhino::Context.new

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

clamp in Ruby and JavaScript with JRuby and Rhino

600000
500000
400000
300000

200000

Operations Per Second

100000

JRuby+indy (just Ruby) JRuby+indy (Ruby + JS with Rhino)

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

ORACLE

factory = javax.script.ScriptEngineManager.new
engine = factory.getEngineByName 'nashorn'’
bindings = engine.createBindings

$clamp = engine.eval("
function clamp(num, min, max) {
if (num < min) {
return min;
} else if (num > max) {
return max;
} else {
return num;
}
}
", bindings)
def cmyk_to_rgb(c, m, y, k)
Hash [{
r: (65535 - (c * (255 - k) + (k << 8))) >> 8,
g: (65535 - (m x (255 - k) + (k << 8))) >> 8,
b: (65535 — (y x (255 - k) + (k << 8))) >> 8
Y.map { |k, v| [k, $clamp.call(v, @, 255)] }]
end

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

clamp in Ruby and JavaScript with JRuby and Nashorn

600000
500000
400000
300000

200000

Operations Per Second

100000

JRuby+indy (just Ruby) JRuby+indy (Ruby + JS with Rhino) JRuby+indy (Ruby + JS with Nashorn)

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

ORACLE

function clamp(num, min, max) {
if (num < min) {
return min;
} else if (num > max) {
return max;
} else {
return num;
}
I

def cmyk_to_rgb(c, m, y, k)
Hash [{
r: (65535 = (c % (255 - k) + (k << 8))) >> 8,
g: (65535 — (m * (255 - k) + (k << 8))) >> 8,
b: (65535 = (y % (255 - k) + (k << 8))) >> 8
yemap { |k, v| [k, clamp(v, @, 255)] }]
end

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

clamp in Ruby and JavaScript with GraalVM

10000000
9000000
8000000
7000000
6000000
5000000
4000000
3000000

Operations Per Second

2000000
1000000

GraalVM (just Ruby) GraalVM (Ruby + JS) JRuby+invokedynamic

0

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

[
Ruby

clamp in all configurations

10000000
9000000
8000000
7000000
6000000
5000000
4000000
3000000
2000000
1000000

0

Operations Per Second

GraalVM (just GraalVM (Ruby JRuby+indy (just JRuby+indy JRuby+indy Ruby (just Ruby) Ruby (Ruby + JS

Ruby) +S) Ruby) (Ruby + JS with (Ruby +JS with with V8)
ORACLE

Rhino) Nashorn)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

clamp in all configurations

10000000

1000000

100000
10000
1000
100

10

GraalVM (just GraalVM (Ruby JRuby+indy (just JRuby+indy JRuby+indy Ruby (just Ruby) Ruby (Ruby + JS

Ruby) +S) Ruby) (Ruby + JS with (Ruby +JS with with V8)
ORACLE

Operations Per Second

[EEY

Rhino) Nashorn)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

How Graal achieves this

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Jython renjin

Conventional JVM implementations of languages work by emitting
JVM bytecode — the same thing that the Java compiler does

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hotspot

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hotspot

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hotspot

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hotspot

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hotspot

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hotspot

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Truffle

Hotspot

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Slightly confusing terminology...

* Graal is a new JIT compiler for the JVM

* Graal VM is the JVM, with Graal, Truffle, and our
languages bundled in it

* Truffle uses Graal on your behalf

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Guest Language

Bytecode

W
JVM

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved

ORACLE

Guest Language

N
Compiler internal data
structures, optimisation passes,
machine code, ...
v
Graal

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

57

Guest Language
\L language interpreter

Truffle

$

Graal

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved

The very basics of Truffle and Graal

ORACLE

X +y * z

ORACLE

load local x
load local y
load local z

call *
call +

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

pushq
mov(
mov(
mov(q
mov(q
mov(q
mov 1l
mov(q
imull
mov(q
addl
popq
ret

%rbp

%rsp, %rbp
%rdi, -8(%rbp)
%rsi, -16(%rbp)
%rdx, -24(%rbp)
-16(%rbp), %rax
%»eax, nedx
-24(%rbp), %rax
%edx, %eax
-8(%rbp), %rdx
»edx, %eax

%rbp

X + y * VA load local x

load local y
load local z
call *

G call +

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

X +y * z

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

AST Interpreter
Uninitialized Nodes

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rule them all. In Proceedings of Onward!, 2013.

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Node Rewriting
for Profiling Feedback

' >

Node Transitions

\

Uninitialized Integer

-
-
*tececcs

AST Interpreter
Uninitialized Nodes

Double

.
o
g
o
-
...........

String

Generic
J

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rule them all. In Proceedings of Onward!, 2013.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

ORACLE

Compilation using
Partial Evaluation

' >

AST Interpreter

Rewritten Nodes Compiled Code

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rule them all. In Proceedings of Onward!, 2013.

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

X

RUBYCONF 2013

codon.com/compilers-for-free

Presentation, by Tom Stuart, licensed under a Creative Commons Attribution ShareAlike 3.0

ORACLE"

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 66

Deoptimization
to AST Interpreter

' e

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rule them all. In Proceedings of Onward!, 2013.

ORACLE

20/04/2017 Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Node Rewriting to Update Recompilation using
Profiling Feedback Partial Evaluation

' > ' >

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rule them all. In Proceedings of Onward!, 2013.

ORACLE

20/04/2017 Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Internal/Restricted/Highly Restricted

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

69

ORACLE

Frequently executed call

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

70

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

71

ORACLE

Frequently executed call

JS

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

72

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

73

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

74

How effective is this in the extreme?

ORACLE

function sum(n) {

def sum(n)
i=o0 var i = 0;
a=0 var a = 0;
while i < n while (i < n) {
i+=1 1 += 1;
3 4+= n a += n;
end ¥
3 return a;
end ¥
values = (1..100).to_a values = (1..100).to_a
loop do loop do
values.each do |v| values.each do |v|
sum(v) sum(v)
end end
end end

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

function sum(n) {

def sum(n)
i=20 var i = 0;
a==o var a = 0;
while i < n — while (i < n) {
i+=1 - 1+=1;
N > Looking at these < 3 4= n:
end D loops here 1}
3 return a;
end ¥
values = (1..100).to_a values = (1..100).to_a
loop do loop do
values.each do |v| values.each do |v|
sum(v) sum(v)
end end
end end

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

function sum(n) {

def sum(n)
1=20
a==o
while i < n
1+=1
0x00000001118dfa30: mov esi,edi
0x00000001118dfa32: add esi,r9ad
0x00000001118dfa35: jo 0x00000001118dfb62
0x00000001118dfa3b: inc ecx
0x00000001118dfa3d: mov edi,esi
0x00000001118dfa3f: cmp rod, ecx
0x00000001118dfad2: jg ?x00000001118dfa30
loop do
values.each do |v|
sum(v)
end

end

ORACLE

var i = 0;
var a = 0;
while (i < n) A
i+=1;
0x000000010cad4ad90@: mov eax, rlld
0x000000010cad4ad93: add eax, rlad
0x000000010cad4ad96: jo 0x000000010cadaeb8
0x000000010cad4ad9c: inc ried
0x000000010cadad9f: mov rlld, eax
0x000000010cadada2: cmp rldd, r10d
0x000000010cadada5: jg 0x000000010cadad9o
loop do
values.each do |v|
sum(v)
end

end

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

def add(a, b) function add(a, b) {

a+b return a + b;
end ¥
def sum(n) def sum(n)
i1=20 i1=20
a=2=0 a=2=0
while 1 < n while 1 < n
i+=1 i+=1
a = add(a, n) a = add(a, n)
end end
a a
end end

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

def add(a, b)

function add(a, b) {

a+b return a + b;
end I
0x0000000103a7dc70: mov esi,edi 0x000000010aadb1f@: mov esi,edi
0x0000000103a7dc72: add esi, rad 0x000000010aadb1f2: add esi, rod
0x0000000103a7dc75: jo 0x0000000103a7dda2 0x000000010aadb1f5: jo 0x000000010aadb322
0x0000000103a7dc7b: inc ecx 0x000000010aadblfb: inc ecx
0x0000000103a7dc7d: mov edi,esi 0x000000010aadblfd: mov edi,esi
0x0000000103a7dc7f: cmp rad, ecx 0x000000010aadblff: cmp rad, ecx
0x0000000103a7dc82: jg 0x0000000103a7dc70 0x000000010aadb202: jg 0x000000010aadb1f0
4 IT= N L T -
a = add(a, n) a = add(a, n)
end end
d a
end end

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

ORACLE

0x0000000103a7dc70: mov esi,edi
0x0000000103a7dc72: add esi, road

0x0000000103a7dc75: jo 0x0000000103a7/dda2
0x0000000103a7dc7b: 1inc ecx

0x0000000103a7dc7d: mov edi,esi
0x0000000103a7dc/f: cmp rad, ecx
0x0000000103a7dc82: jg 0x0000000103a7dc70

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

0x0000000103a7dc70: mov esi,edi

0x0000000103a7dc72: add esi, rad

0x0000000103a7dc75: jo 0x0000000103a7dda2
0x0000000103a7dc7b: 1inc ecx

0x0000000103a7dc7d: mov edi,esi
0x0000000103a7dc/f: cmp rad, ecx
0x0000000103a7dc82: jg 0x0000000103a7dc70

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

What is this for?

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

* We’re not really suggesting that people routinely write alternate methods
in different languages

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

* We're not really suggesting that people routinely write alternate methods
in different languages

* More about removing the consideration of performance from the decision
if you do want to combine languages

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

* Could make all library ecosystems available to all applications

* May be useful for unifying a front-end and back-end

* May be useful in handling legacy applications and incremental changes in
implementation language

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

How to use GraalVM

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

GraalVM — everything in one package today

* Includes:
— JVM (RE or DK)
—Java ﬁ)
— JavaScript =
_ Ruby Java
—R

— More in the future a

* Binary tarball release

* Mac or Linux

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

JS

Java 9 — runs on an unmodified JVM

—
s

BRI -

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java 9 — runs on an unmodified JVM

I
_ Others...

Truffle — Jaqva

JVMCI _
JVM Compiler Interface e
(P) — C++

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java 9 — runs on an unmodified JVM

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Takeaways

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

* Oracle Labs is building Graal VM to support polyglot programs and
programmers

* Extremely high performance for the languages on their own

* Completely unprecedented high performance for language
interoperability

* Will work on an unmodified Java 9 JVM, or available as a bundle today

* Still at the research stage, but moving towards being something more
than that

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Where to find more information

ORACLE

[NON | < | >N 0 oracle.com Q) & (4] t) +

Welcome Chris

Account Sign Out Help Country v Communities v |ama... v |wantto... v Search Q

ORACLE" -
Products Solutions Downloads Store Support Training Partners About |OTN |

Oracle Technology Network > Oracle Labs > Programming Languages and Runtimes > Downloads

Parallel Graph Analytics | Overview | | Java | | Polyglot 1 Downloads | Learn More J
Programming Languages and

Runtimes

—— Oracle Labs GraalVM and JVMCI JDK Downloads

Datasets Thank you for downloading this release of the Oracle Labs GraalVM. With this release, one can
execute Java applications with Graal, as well as applications written in JavaScript, Ruby, and R, with
our Polyglot language engines.

You must accept the OTN License Agreement to download this software.
") Accept License Agreement |~ Decline License Agreement

Search for ‘graal otn’

¥ GraalVM preview for Linux (v0.16), Development Kit

¥ GraalVM preview for Linux (v0.16), Runtime Environment

#® GraalVM preview for Mac OS X (v0.16), Development Kit

¥ GraalVM preview for Mac OS X (v0.16), Runtime Environment

¥ labsjdk-8u92-jvmci-0.20-darwin-amdé4 tar.gz
¥ labsjdk-8u92-jvmci-0.20-linux-amd64.tar.gz
¥ labsjdk-8u92-jvmci-0.20-solaris-sparcv9.tar.gz

How to install GraalVM

Unpack the downloaded *.tar.gz file on your machine. You can then use the java executable to
execute Java programs. All those executables are in the bin directory of GraalVM. You might want to
add that directory to your operating system's PATH.

More detailed getting started instructions are available in the REA
README files for the language engines can be found in jre/lang

www.oracle.com/technetwork/oracle-labs/program-languages

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

[NON R4 Em| & GitHub, Inc. D) & O 0) E

O This organization Pull requests Issues Gist A +-~ m'

N Graal Multi-Language VM

Next generation compilation technology supporting Java, Ruby, R, JavaScript, LLVM, and

https://graalvm.github.io

Repositories ! People 38 i) Teams 2

Filters ~ 2

sulong Java %211 P19
Sulong, a dynamic runtime for LLVM-based languages.

Updated 6 minutes ago

graal-core Java %122 P33

Graal Compiler & Truffle Partial evaluator.

Updated 31 minutes ago

mx Python %13 P26

github.com/graalvm

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

ORACLE

ORACLE

@chrisgseaton
github.com/graalvm
gitter.im/graalvm/graal-core

Search ‘otn graalvm’

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

)

Acknowledgements

Oracle

Danilo Ansaloni
Stefan Anzinger
Cosmin Basca
Daniele Bonetta
Matthias Brantner
Petr Chalupa
Jurgen Christ
Laurent Daynés
Gilles Duboscq
Martin Entlicher
Brandon Fish
Bastian Hossbach
Christian Humer
Mick Jordan

Vojin Jovanovic
Peter Kessler
David Leopoldseder
Kevin Menard
Jakub Podlesak
Aleksandar Prokopec
Tom Rodriguez

ORACLE

Oracle (continued)
Roland Schatz

Chris Seaton

Doug Simon

Stépan Sindela¥
Zbynék Slajchrt
Lukas Stadler
Codrut Stancu

Jan Stola

Jaroslav Tulach
Michael Van De Vanter
Adam Welc
Christian Wimmer
Christian Wirth

Paul Wogerer
Mario Wolczko
Andreas WoR
Thomas Wirthinger

Oracle Interns
Brian Belleville
Miguel Garcia
Shams Imam
Alexey Karyakin
Stephen Kell
Andreas Kunft
Volker Lanting
Gero Leinemann
Julian Lettner
Joe Nash

David Piorkowski
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Alumni

Erik Eckstein
Michael Haupt
Christos Kotselidis
Hyunjin Lee

David Leibs

Chris Thalinger
Till Westmann

JKU Linz

Prof. Hanspeter Mossenbock
Benoit Daloze
Josef Eisl

Thomas Feichtinger
Matthias Grimmer
Christian Haubl
Josef Haider
Christian Huber
Stefan Marr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

University of Edinburgh
Christophe Dubach

Juan José Fumero Alfonso
Ranjeet Singh

Toomas Remmelg

LaBRI
Floréal Morandat

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

University of California, Irvine
Prof. Michael Franz

Gulfem Savrun Yeniceri

Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj

Lei Zhao

T. U. Dortmund

Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Prof. Duncan Temple Lang
Nicholas Ulle

University of Lugano, Switzerland

Prof. Walter Binder
Sun Haiyang
Yudi Zheng

Safe Harbor Statement

The preceding is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development, release, and
timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Integrated Cloud

Applications & Platform Services

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

ORACLE

