

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Self-Specialising
Interpreters and
Partial	Evaluation
Graal and	Truffle

Chris	Seaton
Research	Manager
Oracle	Labs
9 August	2016

falsetrue

guard

falsetrue
If

Begin Begin

Deoptimize

Return

IsNull

LoadHub

P:object

P:profiledHubs-0

P:hubIsPositive-0

Start

If

==

Begin Begin

Deoptimize

IR Node

Control-flow Edge

Data-flow Edge

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	following	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	information	purposes	only,	and	may	not	be	incorporated	into	any	contract.		
It	is	not	a	commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	
relied	upon	in	making	purchasing	decisions.	Oracle	reserves	the	right	to	alter	its	
development	plans	and	practices	at	any	time,	and	the	development,	release,	and	timing	
of	any	features	or	functionality	described	in	connection	with	any	Oracle	product	or	
service	remains	at	the	sole	discretion	of	Oracle.		Any	views	expressed	in	this	presentation	
are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Compilers	are,	of	course,
metaprogramming	systems

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Writing	languages	that	target
the	JVM

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

JIT

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

JIT

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

JIT

JIT

(Graal)

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

JIT

JIT

(Graal)

Truffle

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Two	levels	of	program
representation

• Truffle	– ASTs
• Graal – compiler	IR

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Truffle

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 19

codon.com/compilers-for-free

Presentation,	by	Tom	Stuart,	licensed	under	a	Creative	Commons	Attribution	ShareAlike 3.0	

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|12/08/2016

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update
Profiling Feedback

Recompilation using
Partial Evaluation

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|12/08/2016 Oracle	Confidential	– Internal/Restricted/Highly	Restricted

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update
Profiling Feedback

Recompilation using
Partial Evaluation

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 22

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 23

Frequently executed call

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 24

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 25

BigInteger

double

int

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 26

BigInteger

double

int

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 27

double

int

BigInteger

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Partial	Evaluation	and	
Transfer	to	Interpreter

28

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Partial	Evaluation

29

class ExampleNode {
@CompilationFinal boolean flag;

int foo() {
if (this.flag) {

return 42;
} else {

return -1;
}

}

// parameter this in rsi
cmpb [rsi + 16], 0
jz L1
mov eax, 42
ret

L1: mov eax, -1
ret

normal compilation
of method foo()

mov rax, 42
ret

partial evaluation
of method foo()
with known parameter this

ExampleNode
flag: true

Object value of this

@CompilationFinal field is treated like a final
field during partial evaluation

Memory access is eliminated and condition is
constant folded during partial evaluation

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Transfer	to	Interpreter

30

class ExampleNode {
int foo(boolean flag) {

if (flag) {
return 42;

} else {
throw new IllegalArgumentException(

"flag: " + flag);
}

}

// parameter flag in edi
cmp edi, 0
jz L1
mov eax, 42
ret

L1: ...
// lots of code here

transferToInterpreter() is a call into the VM
runtime that does not return to its caller,
because execution continues in the interpreter

class ExampleNode {
int foo(boolean flag) {

if (flag) {
return 42;

} else {
transferToInterpreter();
throw new IllegalArgumentException(

"flag: " + flag);
}

}

// parameter flag in edi
cmp edi, 0
jz L1
mov eax, 42
ret

L1: mov [rsp + 24], edi
call transferToInterpreter
// no more code, this point is unreachable

compilation of method foo()

compilation of method foo()

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Partial	Evaluation	and	Transfer	to	Interpreter

31

class ExampleNode {

@CompilationFinal boolean minValueSeen;

int negate(int value) {
if (value == Integer.MIN_VALUE) {

if (!minValueSeen) {
transferToInterpreterAndInvalidate();
minValueSeen = true;

}
throw new ArithmeticException()

}

return -value;
}

}

// parameter value in eax
cmp eax, 0x80000000
jz L1
neg eax
ret

L1: mov [rsp + 24], eax
call transferToInterpreterAndInvalidate
// no more code, this point is unreachable

if compiled code is invoked with minimum int value:
1) transfer back to the interpreter
2) invalidate the compiled code

ExampleNode
minValueSeen: true

ExampleNode
minValueSeen: false

partial evaluation
of method negate()
with known parameter this

// parameter value in eax
cmp eax, 0x80000000
jz L1
neg eax
ret

L1: ...
// lots of code here to throw exception

second
partial evaluation

Expected behavior: method negate() only
called with allowed values

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

class ExampleNode {

final BranchProfile minValueSeen = BranchProfile.create();

int negate(int value) {
if (value == Integer.MIN_VALUE) {

minValueSeen.enter();
throw new ArithmeticException();

}
return -value;

}
}

Branch	Profiles

32

Truffle profile API provides high-level API that
hides complexity and is easier to use

Best Practice: Use classes in com.oracle.truffle.api.profiles when possible, instead of @CompilationFinal

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Condition	Profiles	for	Branch	Probability

33

class ExampleNode {

final ConditionProfile positive = ConditionProfile.createCountingProfile();
final BranchProfile minValueSeen = BranchProfile.create();

int abs(int value) {
if (positive.profile(value >= 0)) {

return value;

} else if (value == Integer.MIN_VALUE) {
minValueSeen.enter();
throw new ArithmeticException();

} else {
return -value;

}
}

}

BranchProfile: remove unlikely code paths

Counting ConditionProfile: add branch probability
for code paths with different execution frequencies

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Profiles:	Summary
• BranchProfile to	speculate	on	unlikely	branches

– Benefit:	remove	code	of	unlikely	code	paths

• ConditionProfile to	speculate	on	conditions
– createBinaryProfile does	not	profile	probabilities

• Benefit:	remove	code	of	unlikely	branches
– createCountingProfile profiles	probabilities

• Benefit:	better	machine	code	layout	for	branches	with	asymmetric	execution	frequency

• ValueProfile	to	speculate	on	Object	values
– createClassProfile	to	profile	the	class	of	the	Object

• Benefit:	compiler	has	a	known	type	for	a	value	and	can,	e.g.,	replace	virtual	method	calls	with	direct	method	calls	and	then	inline	the	callee
– createIdentityProfile	to	profile	the	object	identity

• Benefit:	compiler	has	a	known	compile	time	constant	Object	value	and	can,	e.g.,	constant	fold	final	field	loads

• PrimitiveValueProfile
– Benefit:	compiler	has	a	known	compile	time	constant	primitive	value	an	can,	e.g.,	constant	fold	arithmetic	operations

34

Profiles are for local speculation only
(only invalidate one compiled method)

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Assumptions

Assumption assumption = Truffle.getRuntime().createAssumption();

void foo() {
if (assumption.isValid()) {

// Fast-path code that is only valid if assumption is true.
} else {

// Perform node specialization, or other slow-path code to respond to change.
}

}

assumption.invalidate();

Create an assumption:

Check an assumption:

Invalidate an assumption:

35

Assumptions allow non-local speculation
(across multiple compiled methods)

Checking an assumption does not need
machine code, it really is a "free lunch"

When an assumption is invalidate, all compiled
methods that checked it are invalidated

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Assumptions

36

class ExampleNode {

public static final Assumption addNotRedefined = Truffle.getRuntime().createAssumption();

int add(int left, int right) {
if (addNotRedefined.isValid()) {

return left + right;
} else {

...
// Complicated code to call user-defined add function

}
}

}

Expected behavior: user does not redefine "+" for
integer values

void redefineFunction(String name, ...) {
if (name.equals("+")) {

addNotRedefined.invalidate()) {
...

}
} This is not a synthetic example: Ruby allows

redefinition of all operators on all types, including the
standard numeric types

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Specialization

37

I

S

U

instanceof
String

instanceof
Integer

T

F

T

F

value instanceof
{Integer, String}

Truffle provides a DSL for this use case, see
later slides that introduce @Specialization

U

value instanceof
{}

I

U

instanceof
Integer

T

F

value instanceof
{Integer}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Profile,	Assumption,	or	Specialization?
• Use	profiles	where	local,	monomorphic	speculation	is	sufficient

– Transfer	to	interpreter	is	triggered	by	the	compiled	method	itself
– Recompilation	does	not	speculate	again

• Use	assumptions	for	non-local	speculation
– Transfer	to	interpreter	is	triggered	from	outside	of	a	compiled	method
– Recompilation	often	speculates	on	a	new	assumption	(or	does	not	speculate	again)

• Use	specializations	for	local	speculations	where	polymorphism	is	required
– Transfer	to	interpreter	is	triggered	by	the	compiled	method	method
– Interpreter	adds	a	new	specialization
– Recompilation	speculates	again,	but	with	more	allowed	cases

38

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

A	Simple	Language

39

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SL:	A	Simple	Language
• Language	to	demonstrate	and	showcase	features	of	Truffle

– Simple	and	clean	implementation
– Not	the	language	for	your	next	implementation	project

• Language	highlights
– Dynamically	typed
– Strongly	typed

• No	automatic	type	conversions
– Arbitrary	precision	integer	numbers
– First	class	functions
– Dynamic	function	redefinition
– Objects	are	key-value	stores

• Key	and	value	can	have	any	type,	but	typically	the	key	is	a	String

40

About 2.5k lines of code

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Types
SL	Type Values Java Type	in	Implementation

Number Arbitrary precision	integer	numbers long for	values	that	fit	within 64	bits
java.lang.BigInteger on	overflow

Boolean true, false boolean

String Unicode characters java.lang.String

Function Reference to	a	function SLFunction

Object key-value store DynamicObject

Null null SLNull.SINGLETON

Best Practice: Do not use the Java null value for the guest language null value

Best Practice: Use Java primitive types as much as possible to increase performance

Null is its own type; could also be called "Undefined"

41

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Syntax
• C-like	syntax	for	control	flow

– if,	while,	break,	continue,	return

• Operators
– +,	-,	*,	/,	==,	!=,	<,	<=,	>,	>=,	&&,	||,	()
– +	is	defined	on	String,	performs	String	concatenation
– &&	and	||	have	short-circuit	semantics
– .	or	[]	for	property	access

• Literals
– Number,	String,	Function

• Builtin functions
– println,	readln:	Standard	I/O
– nanoTime:	to	allow	time	measurements
– defineFunction:	dynamic	function	redefinition
– stacktrace,	helloEqualsWorld:	stack	walking	and	stack	frame	manipulation
– new:	Allocate	a	new	object	without	properties

42

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Parsing
• Scanner	and	parser	generated	from	grammar

– Using	Coco/R
– Available	from	http://ssw.jku.at/coco/

• Refer	to	Coco/R	documentation	for	details
– This	is	not	a	tutorial	about	parsing

• Building	a	Truffle	AST	from	a	parse	tree	is	usually	simple

Best Practice: Use your favorite parser generator, or an existing parser for your language

43

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SL	Examples

function main() {
println("Hello World!");

}

Hello World:
function main() {

i = 0;
sum = 0;
while (i <= 10000) {

sum = sum + i;
i = i + 1;

}
return sum;

}

Simple loop:

function foo() { println(f(40, 2)); }

function main() {
defineFunction("function f(a, b) { return a + b; }");
foo();

defineFunction("function f(a, b) { return a - b; }");
foo();

}

Function definition and redefinition:

function add(a, b) { return a + b; }
function sub(a, b) { return a - b; }

function foo(f) {
println(f(40, 2));

}

function main() {
foo(add);
foo(sub);

}

First class functions:

function f(a, b) {
return a + " < " + b + ": " + (a < b);

}

function main() {
println(f(2, 4));
println(f(2, "4"));

}

Strings:

44

function main() {
obj = new();
obj.prop = "Hello World!";
println(obj["pr" + "op"]);

}

Objects:

Hello World!

2 < 4: true
Type error

50005000
42
38

42
38

Hello World!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Getting	Started
• Clone	repository

– git clone https://github.com/graalvm/simplelanguage

• Download	Graal VM	Development	Kit
– http://www.oracle.com/technetwork/oracle-labs/program-languages/downloads
– Unpack	the	downloaded	graalvm_*.tar.gz into	simplelanguage/graalvm
– Verify	that	launcher	exists	and	is	executable:		simplelanguage/graalvm/bin/java

• Build
– mvn package

• Run	example	program
– ./sl tests/HelloWorld.sl

• IDE	Support
– Import	the	Maven	project	into	your	favorite	IDE
– Instructions	for	Eclipse,	NetBeans,	IntelliJ are	in	README.md

45

Version used in this tutorial: tag PLDI_2016

Version used in this tutorial: Graal VM 0.12

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Simple	Tree	Nodes

46

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

AST	Interpreters
• AST	=	Abstract	Syntax	Tree

– The	tree	produced	by	a	parser	of	a	high-level	language	compiler

• Every	node	can	be	executed
– For	our	purposes,	we	implement	nodes	as	a	class	hierarchy
– Abstract	executemethod	defined	in	Node base	class
– Execute	overwritten	in	every	subclass

• Children	of	an	AST	node	produce	input	operand	values
– Example:	AddNode to	perform	addition	has	two	children:	left and	right

• AddNode.execute first	calls	left.execute and	right.execute to	compute	the	operand	values
• Then	peforms the	addition	and	returns	the	result

– Example:	IfNode has	three	children:	condition,	thenBranch,	elseBranch
• IfNode.execute first	calls	condition.execute to	compute	the	condition	value
• Based	on	the	condition	value,	it	either	calls	thenBranch.execute or	elseBranch.execute (but	never	both	of	them)

• Textbook	summary
– Execution	in	an	AST	interpreter	is	slow	(virtual	call	for	every	executed	node)
– But,	easy	to	write	and	reason	about;	portable

47

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Truffle	Nodes	and	Trees
• Class	Node:	base	class	of	all	Truffle	tree	nodes

– Management	of	parent	and	children
– Replacement	of	this	node	with	a	(new)	node
– Copy	a	node
– No	execute()	methods:	define	your	own	in	subclasses

• Class	NodeUtil provides	useful	utility	methods

public abstract class Node implements Cloneable {

public final Node getParent() { ... }
public final Iterable<Node> getChildren() { ... }

public final <T extends Node> T replace(T newNode) { ... }
public Node copy() { ... }

public SourceSection getSourceSection();
}

48

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Rule: A field for a child node must be annotated with @Child and must not be final

If	Statement
public final class SLIfNode extends SLStatementNode {

@Child private SLExpressionNode conditionNode;
@Child private SLStatementNode thenPartNode;
@Child private SLStatementNode elsePartNode;

public SLIfNode(SLExpressionNode conditionNode, SLStatementNode thenPartNode, SLStatementNode elsePartNode) {
this.conditionNode = conditionNode;
this.thenPartNode = thenPartNode;
this.elsePartNode = elsePartNode;

}

public void executeVoid(VirtualFrame frame) {
if (conditionNode.executeBoolean(frame)) {

thenPartNode.executeVoid(frame);
} else {

elsePartNode.executeVoid(frame);
}

}
}

49

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

If	Statement	with	Profiling
public final class SLIfNode extends SLStatementNode {

@Child private SLExpressionNode conditionNode;
@Child private SLStatementNode thenPartNode;
@Child private SLStatementNode elsePartNode;

private final ConditionProfile condition = ConditionProfile.createCountingProfile();

public SLIfNode(SLExpressionNode conditionNode, SLStatementNode thenPartNode, SLStatementNode elsePartNode) {
this.conditionNode = conditionNode;
this.thenPartNode = thenPartNode;
this.elsePartNode = elsePartNode;

}

public void executeVoid(VirtualFrame frame) {
if (condition.profile(conditionNode.executeBoolean(frame))) {

thenPartNode.executeVoid(frame);
} else {

elsePartNode.executeVoid(frame);
}

}
}

50

Best practice: Profiling in the interpreter allows the
compiler to generate better code

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Blocks
public final class SLBlockNode extends SLStatementNode {

@Children private final SLStatementNode[] bodyNodes;

public SLBlockNode(SLStatementNode[] bodyNodes) {
this.bodyNodes = bodyNodes;

}

@ExplodeLoop
public void executeVoid(VirtualFrame frame) {

for (SLStatementNode statement : bodyNodes) {
statement.executeVoid(frame);

}
}

}

Rule: The iteration of the children must be annotated with @ExplodeLoop

Rule: A field for multiple child nodes must be annotated with @Children and a final array

51

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Return	Statement:	Inter-Node	Control	Flow

Best practice: Use Java exceptions for inter-node control flow

Rule: Exceptions used to model control flow extend ControlFlowException

public final class SLFunctionBodyNode extends SLExpressionNode {
@Child private SLStatementNode bodyNode;
...
public Object executeGeneric(VirtualFrame frame) {

try {
bodyNode.executeVoid(frame);

} catch (SLReturnException ex) {
return ex.getResult();

}
return SLNull.SINGLETON;

}
}

public final class SLReturnException
extends ControlFlowException {

private final Object result;
...

}

public final class SLReturnNode extends SLStatementNode {
@Child private SLExpressionNode valueNode;
...
public void executeVoid(VirtualFrame frame) {

throw new SLReturnException(valueNode.executeGeneric(frame));
}

}

52

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 53

Exceptions	for	Inter-Node	Control	Flow

Inter-Node
Control Flow

SLBlockNode

SLFunctionBodyNode

...

SLReturnNode

bodyNode

...

valueNode

try {
bodyNode.executeVoid(frame);

} catch (SLReturnException ex) {
return ex.getResult();

}

Object value = valueNode.executeGeneric(frame);
throw new SLReturnException(value);

SLReturnException
value: ...

Exception unwinds all the interpreter stack frames of
the method (loops, conditions, blocks, ...)

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Truffle	DSL	for	Specializations

54

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Addition
@NodeChildren({@NodeChild("leftNode"), @NodeChild("rightNode")})
public abstract class SLBinaryNode extends SLExpressionNode { }

public abstract class SLAddNode extends SLBinaryNode {

@Specialization(rewriteOn = ArithmeticException.class)
protected final long add(long left, long right) {

return ExactMath.addExact(left, right);
}

@Specialization
protected final BigInteger add(BigInteger left, BigInteger right) {

return left.add(right);
}

@Specialization(guards = "isString(left, right)")
protected final String add(Object left, Object right) {

return left.toString() + right.toString();
}

protected final boolean isString(Object a, Object b) {
return a instanceof String || b instanceof String;

}
}

For all other specializations, guards are
implicit based on method signature

55

The order of the @Specialization
methods is important: the first matching
specialization is selected

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Generated code with factory method:

Code	Generated	by	Truffle	DSL	(1)

@GeneratedBy(SLAddNode.class)
public final class SLAddNodeGen extends SLAddNode {

public static SLAddNode create(SLExpressionNode leftNode, SLExpressionNode rightNode) { ... }

...
} The parser uses the factory to create a node

that is initially in the uninitialized state

56

The generated code performs all the transitions
between specialization states

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Code	Generated	by	Truffle	DSL	(2)
@GeneratedBy(methodName = "add(long, long)", value = SLAddNode.class)
private static final class Add0Node_ extends BaseNode_ {

@Override
public long executeLong(VirtualFrame frameValue) throws UnexpectedResultException {

long leftNodeValue_;
try {

leftNodeValue_ = root.leftNode_.executeLong(frameValue);
} catch (UnexpectedResultException ex) {

Object rightNodeValue = executeRightNode_(frameValue);
return SLTypesGen.expectLong(getNext().execute_(frameValue, ex.getResult(), rightNodeValue));

}
long rightNodeValue_;
try {

rightNodeValue_ = root.rightNode_.executeLong(frameValue);
} catch (UnexpectedResultException ex) {

return SLTypesGen.expectLong(getNext().execute_(frameValue, leftNodeValue_, ex.getResult()));
}
try {

return root.add(leftNodeValue_, rightNodeValue_);
} catch (ArithmeticException ex) {

root.excludeAdd0_ = true;
return SLTypesGen.expectLong(remove("threw rewrite exception", frameValue, leftNodeValue_, rightNodeValue_));

}
}

@Override
public Object execute(VirtualFrame frameValue) {

try {
return executeLong(frameValue);

} catch (UnexpectedResultException ex) {
return ex.getResult();

}
}

57

The generated code can and will change
at any time

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Type	System	Definition	in	Truffle	DSL

@TypeSystemReference(SLTypes.class)
public abstract class SLExpressionNode extends SLStatementNode {

public abstract Object executeGeneric(VirtualFrame frame);

public long executeLong(VirtualFrame frame) throws UnexpectedResultException {
return SLTypesGen.SLTYPES.expectLong(executeGeneric(frame));

}
public boolean executeBoolean(VirtualFrame frame) ...

}

@TypeSystem({long.class, BigInteger.class, boolean.class,
String.class, SLFunction.class, SLNull.class})

public abstract class SLTypes {
@ImplicitCast
public BigInteger castBigInteger(long value) {

return BigInteger.valueOf(value);
}

}

Rule: One execute() method per type you want to specialize on, in addition to the abstract executeGeneric() method

Not shown in slide: Use @TypeCheck and
@TypeCast to customize type conversions

SLTypesGen is a generated subclass
of SLTypes

58

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

UnexpectedResultException
• Type-specialized	execute()methods	have	specialized	return	type

– Allows	primitive	return	types,	to	avoid	boxing
– Allows	to	use	the	result	without	type	casts
– Speculation	types	are	stable	and	the	specialization	fits

• But	what	to	do	when	speculation	was	too	optimistic?
– Need	to	return	a	value	with	a	type	more	general	than	the	return	type
– Solution:	return	the	value	“boxed”	in	an	UnexpectedResultException

• Exception	handler	performs	node	rewriting
– Exception	is	thrown	only	once,	so	no	performance	bottleneck

59

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 60

Truffle	DSL	Workflow

Java Annotation Processor
(DSL Implementation)

Java Code
with Node Specifications

Java Annotations
 (DSL Definition)

uses

Java compiler
(javac, Eclipse, …) Generated Java Code for

Specialized Nodes

Executable

generates

compiles

compiles

generates

calls

iterates
annotations

1

2 3
5

4

6
7

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Compilation

61

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Compilation
• Automatic	partial	evaluation	of	AST

– Automatically	triggered	by	function	execution	count

• Compilation	assumes	that	the	AST	is	stable
– All	@Child and	@Children fields	treated	like	final fields

• Later	node	rewriting	invalidates	the	machine	code
– Transfer	back	to	the	interpreter:	“Deoptimization”
– Complex	logic	for	node	rewriting	not	part	of	compiled	code
– Essential	for	excellent	peak	performance

• Compiler	optimizations	eliminate	the	interpreter	overhead
– No	more	dispatch	between	nodes
– No	more	allocation	of	VirtualFrame objects
– No	more	exceptions	for	inter-node	control	flow

62

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Truffle	Compilation	API
• Default	behavior	of	compilation:	Inline	all	reachable	Java	methods

• Truffle	API	provides	class	CompilerDirectives to	influence	compilation
– @CompilationFinal

• Treat	a	field	as	final during	compilation	
– transferToInterpreter()

• Never	compile	part	of	a	Java	method
– transferToInterpreterAndInvalidate()

• Invalidate	machine	code	when	reached
• Implicitly	done	by	Node.replace()

– @TruffleBoundary
• Marks	a	method	that	is	not	important	for	performance,	i.e.,	not	part	of	partial	evaluation

– inInterpreter()
• For	profiling	code	that	runs	only	in	the	interpreter

– Assumption
• Invalidate	machine	code	from	outside
• Avoid	checking	a	condition	over	and	over	in	compiled	code

63

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Slow	Path	Annotation
public abstract class SLPrintlnBuiltin extends SLBuiltinNode {

@Specialization
public final Object println(Object value) {

doPrint(getContext().getOutput(), value);
return value;

}

@TruffleBoundary
private static void doPrint(PrintStream out, Object value) {

out.println(value);
}

} Why @TruffleBoundary? Inlining something as big as
println() would lead to code explosion

When compiling, the output stream is a constant

64

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Compiler	Assertions
• You	work	hard	to	help	the	compiler
• How	do	you	check	that	you	succeeded?

• CompilerAsserts.partialEvaluationConstant()
– Checks	that	the	passed	in	value	is	a	compile-time	constant	early	during	partial	evaluation

• CompilerAsserts.compilationConstant()
– Checks	that	the	passed	in	value	is	a	compile-time	constant	(not	as	strict	as	partialEvaluationConstant)
– Compiler	fails	with	a	compilation	error	if	the	value	is	not	a	constant
– When	the	assertion	holds,	no	code	is	generated	to	produce	the	value

• CompilerAsserts.neverPartOfCompilation()
– Checks	that	this	code	is	never	reached	in	a	compiled	method
– Compiler	fails	with	a	compilation	error	if	code	is	reachable
– Useful	at	the	beginning	of	helper	methods	that	are	big	or	rewrite	nodes
– All	code	dominated	by	the	assertion	is	never	compiled

65

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

function loop(n) {
i = 0;
sum = 0;
while (i <= n) {

sum = sum + i;
i = i + 1;

}
return sum;

}

Compilation
SL source code: Machine code for loop:

mov r14, 0
mov r13, 0
jmp L2

L1: safepoint
mov rax, r13
add rax, r14
jo L3
inc r13
mov r14, rax

L2: cmp r13, rbp
jle L1
...

L3: call transferToInterpreter

Run this example:
./sl -dump	-disassemble	tests/SumPrint.sl

Disassembling is enabled

Graph dumping to IGV is enabled

66

Background compilation is disabled

Truffle compilation printing is enabled

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Visualization	Tools:	IGV

67

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Visualization	Tools:	IGV

68

Download IGV from
https://lafo.ssw.uni-linz.ac.at/pub/idealgraphvisualizer

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Function	Calls

69

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Polymorphic	Inline	Caches
• Function	lookups	are	expensive

– At	least	in	a	real	language,	in	SL	lookups	are	only	a	few	field	loads
• Checking	whether	a	function	is	the	correct	one	is	cheap

– Always	a	single	comparison

• Inline	Cache
– Cache	the	result	of	the	previous	lookup	and	check	that	it	is	still	correct

• Polymorphic	Inline	Cache
– Cache	multiple	previous	lookups,	up	to	a	certain	limit

• Inline	cache	miss	needs	to	perform	the	slow	lookup

• Implementation	using	tree	specialization
– Build	chain	of	multiple	cached	functions

70

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Simple	Polymorphic	Inline	Cache

71

public abstract class ANode extends Node {

public abstract Object execute(Object operand);

@Specialization(limit = "3",
guards = "operand == cachedOperand")

protected Object doCached(AType operand,
@Cached("operand") AType cachedOperand) {

// implementation
return cachedOperand;

}

@Specialization(contains = "doCached")
protected Object doGeneric(AType operand) {

// implementation
return operand;

}
}

The cachedOperand is a compile time constant

Up to 3 compile time constants are cached

The operand is no longer a compile time constant

The @Cached annotation leads to a final field in the generated code

Compile time constants are usually the starting point for more constant folding

The generic case contains all cached cases, so the 4th

unique value removes the cache chain

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example	of	cache	with	length	2
Polymorphic	Inline	Cache	for	Function	Dispatch

SLUninitializedDispatch

SLInvokeNode

function arguments

SLDirectDispatch

SLInvokeNode

SLUninitializedDispatch SLDirectDispatch

SLInvokeNode

SLUninitializedDispatch

SLDirectDispatch

SLInvokeNode

SLGenericDispatch

After Parsing 1 Function 2 Functions >2 Functions

72

The different dispatch nodes are for
illustration only, the generated code
uses different names

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Invoke	Node
public final class SLInvokeNode extends SLExpressionNode {

@Child private SLExpressionNode functionNode;
@Children private final SLExpressionNode[] argumentNodes;
@Child private SLDispatchNode dispatchNode;

@ExplodeLoop
public Object executeGeneric(VirtualFrame frame) {

Object function = functionNode.executeGeneric(frame);

Object[] argumentValues = new Object[argumentNodes.length];
for (int i = 0; i < argumentNodes.length; i++) {

argumentValues[i] = argumentNodes[i].executeGeneric(frame);
}

return dispatchNode.executeDispatch(frame, function, argumentValues);
}

}

Separation of concerns: this node evaluates the function and arguments only

73

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Separation of concerns: this node builds the inline cache chain

Dispatch	Node
public abstract class SLDispatchNode extends Node {

public abstract Object executeDispatch(VirtualFrame frame, Object function, Object[] arguments);

@Specialization(limit = "2",
guards = "function == cachedFunction",
assumptions = "cachedFunction.getCallTargetStable()")

protected static Object doDirect(VirtualFrame frame, SLFunction function, Object[] arguments,
@Cached("function") SLFunction cachedFunction,
@Cached("create(cachedFunction.getCallTarget())") DirectCallNode callNode) {

return callNode.call(frame, arguments);
}

@Specialization(contains = "doDirect")
protected static Object doIndirect(VirtualFrame frame, SLFunction function, Object[] arguments,

@Cached("create()") IndirectCallNode callNode) {

return callNode.call(frame, function.getCallTarget(), arguments);
}

}

74

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Partial evaluation can go across function boundary (function inlining) because callNode with its callTarget is final

Code	Created	from	Guards	and	@Cached Parameters

if (number of doDirect inline cache entries < 2) {

if (function instanceof SLFunction) {

cachedFunction = (SLFunction) function;

if (function == cachedFunction) {

callNode = DirectCallNode.create(cachedFunction.getCallTarget());

assumption1 = cachedFunction.getCallTargetStable();

if (assumption1.isValid()) {

create and add new doDirect inline cache entry

75

Code creating the doDirect inline cache (runs infrequently):
assumption1.check();

if (function instanceof SLFunction) {

if (function == cachedFunction)) {

callNode.call(frame, arguments);

Code checking the inline cache (runs frequently):

Code that is compiled to a no-op is
marked strikethrough

The inline cache check is only one comparison with a compile time constant

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Language	Nodes	vs.	Truffle	Framework	Nodes

Language specific

Truffle framework

Language specific

Truffle framework code triggers compilation, function inlining, …

Callee

Caller

SLDispatchNode

SLInvokeNode

DirectCallNode

CallTarget

SLRootNode

76

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Function	Redefinition	(1)
• Problem

– In	SL,	functions	can	be	redefined	at	any	time
– This	invalidates	optimized	call	dispatch,	and	function	inlining
– Checking	for	redefinition	before	each	call	would	be	a	huge	overhead

• Solution
– Every	SLFunction has	an	Assumption
– Assumption is	invalidated	when	the	function	is	redefined

• This	invalidates	optimized	machine	code

• Result
– No	overhead	when	calling	a	function

77

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Function	Redefinition	(2)
public abstract class SLDefineFunctionBuiltin extends SLBuiltinNode {

@TruffleBoundary
@Specialization
public String defineFunction(String code) {

Source source = Source.fromText(code, "[defineFunction]");
getContext().getFunctionRegistry().register(Parser.parseSL(source));
return code;

}
}

SL semantics: Functions can be defined and redefined at any time

Why @TruffleBoundary? Inlining something as big as the
parser would lead to code explosion

78

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Function	Redefinition	(3)
public final class SLFunction {

private final String name;
private RootCallTarget callTarget;
private Assumption callTargetStable;

protected SLFunction(String name) {
this.name = name;
this.callTarget = Truffle.getRuntime().createCallTarget(new SLUndefinedFunctionRootNode(name));
this.callTargetStable = Truffle.getRuntime().createAssumption(name);

}

protected void setCallTarget(RootCallTarget callTarget) {
this.callTarget = callTarget;
this.callTargetStable.invalidate();
this.callTargetStable = Truffle.getRuntime().createAssumption(name);

}
} The utility class CyclicAssumption simplifies this code

79

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Function	Arguments
• Function	arguments	are	not	type-specialized

– Passed	in	Object[] array

• Function	prologue	writes	them	to	local	variables
– SLReadArgumentNode in	the	function	prologue
– Local	variable	accesses	are	type-specialized,	so	only	one	unboxing

Example SL code:
function add(a, b) {

return a + b;
}

function main() {
add(2, 3);

}

Specialized AST for function add():
SLRootNode

bodyNode = SLFunctionBodyNode
bodyNode = SLBlockNode

bodyNodes[0] = SLWriteLocalVariableNode<writeLong>(name = "a")
valueNode = SLReadArgumentNode(index = 0)

bodyNodes[1] = SLWriteLocalVariableNode<writeLong>(name = "b")
valueNode = SLReadArgumentNode(index = 1)

bodyNodes[2] = SLReturnNode
valueNode = SLAddNode<addLong>

leftNode = SLReadLocalVariableNode<readLong>(name = "a")
rightNode = SLReadLocalVariableNode<readLong>(name = "b")

80

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Function	Inlining vs.	Function	Splitting
• Function	inlining is	one	of	the	most	important	optimizations

– Replace	a	call	with	a	copy	of	the	callee

• Function	inlining in	Truffle	operates	on	the	AST	level
– Partial	evaluation	does	not	stop	at	DirectCallNode,	but	continues	into	next	CallTarget
– All	later	optimizations	see	the	big	combined	tree,	without	further	work

• Function	splitting	creates	a	new,	uninitialized	copy	of	an	AST
– Specialization	in	the	context	of	a	particular	caller
– Useful	to	avoid	polymorphic	specializations	and	to	keep	polymorphic	inline	caches	shorter
– Function	inlining can	inline	a	better	specialized	AST
– Result:	context	sensitive	profiling	information

• Function	inlining and	function	splitting	are	language	independent
– The	Truffle	framework	is	doing	it	automatically	for	you

81

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 82

Compilation	with	Inlined Function
Machine code for loop without call:

function add(a, b) {
return a + b;

}

function loop(n) {
i = 0;
sum = 0;
while (i <= n) {

sum = add(sum, i);
i = add(i, 1);

}
return sum;

}

SL source code with call: Machine code for loop with call:
function loop(n) {

i = 0;
sum = 0;
while (i <= n) {

sum = sum + i;
i = i + 1;

}
return sum;

}

SL source code without call:
mov r14, 0
mov r13, 0
jmp L2

L1: safepoint
mov rax, r13
add rax, r14
jo L3
inc r13
mov r14, rax

L2: cmp r13, rbp
jle L1
...

L3: call transferToInterpreter

mov r14, 0
mov r13, 0
jmp L2

L1: safepoint
mov rax, r13
add rax, r14
jo L3
inc r13
mov r14, rax

L2: cmp r13, rbp
jle L1
...

L3: call transferToInterpreter

Truffle gives you function inlining for free!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Polymorphic	Inline	Cache	in	SLReadPropertyCacheNode
@Specialization(limit = "CACHE_LIMIT",

guards = {"namesEqual(cachedName, name)", "shapeCheck(shape, receiver)"},
assumptions = {"shape.getValidAssumption()"})

protected static Object readCached(DynamicObject receiver, Object name,
@Cached("name") Object cachedName,
@Cached("lookupShape(receiver)") Shape shape,
@Cached("lookupLocation(shape, name)") Location location) {

return location.get(receiver, shape);
}

@TruffleBoundary
@Specialization(contains = {"readCached"},

guards = {"isValidSLObject(receiver)"})
protected static Object readUncached(DynamicObject receiver, Object name) {

Object result = receiver.get(name);
if (result == null) {

throw SLUndefinedNameException.undefinedProperty(name);
}
return result;

}

83

@Fallback
protected static Object updateShape(Object r, Object name) {

CompilerDirectives.transferToInterpreter();
if (!(r instanceof DynamicObject)) {

throw SLUndefinedNameException.undefinedProperty(name);
}
DynamicObject receiver = (DynamicObject) r;
receiver.updateShape();
return readUncached(receiver, name);

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Polymorphic	Inline	Cache	in	SLReadPropertyCacheNode
• Initialization	of	the	inline	cache	entry	(executed	infrequently)

– Lookup	the	shape	of	the	object
– Lookup	the	property	name	in	the	shape
– Lookup	the	location	of	the	property
– Values	cached	in	compilation	final	fields:	name,	shape,	and	location

• Execution	of	the	inline	cache	entry	(executed	frequently)
– Check	that	the	name	matches	the	cached	name
– Lookup	the	shape	of	the	object	and	check	that	it	matches	the	cached	shape
– Use	the	cached	location	for	the	read	access

• Efficient	machine	code	because	offset	and	type	are	compile	time	constants

• Uncached lookup	(when	the	inline	cache	size	exceeds	the	limit)
– Expensive	property	lookup	for	every	read	access

• Fallback
– Update	the	object	to	a	new	layout	when	the	shape	has	been	invalidated	

84

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Polymorphic	Inline	Cache	for	Property	Writes
• Two	different	inline	cache	cases

–Write	a	property	that	does	exist
• No	shape	transition	necessary
• Guard	checks	that	the	type	of	the	new	value	is	the	expected	constant	type
• Write	the	new	value	to	a	constant	location	with	a	constant	type

–Write	a	property	that	does	not	exist
• Shape	transition	necessary
• Both	the	old	and	the	new	shape	are	@Cached values
• Write	the	new	constant	shape
• Write	the	new	value	to	a	constant	location	with	a	constant	type

• Uncached write	and	Fallback	similar	to	property	read

85

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 86

Compilation	with	Object	Allocation
Machine code without allocation:

function loop(n) {
o = new();
o.i = 0;
o.sum = 0;
while (o.i <= n) {

o.sum = o.sum + o.i;
o.i = o.i + 1;

}
return o.sum;

}

SL source with allocation: Machine code with allocation:
function loop(n) {

i = 0;
sum = 0;
while (i <= n) {

sum = sum + i;
i = i + 1;

}
return sum;

}

SL source without allocation:
mov r14, 0
mov r13, 0
jmp L2

L1: safepoint
mov rax, r13
add rax, r14
jo L3
inc r13
mov r14, rax

L2: cmp r13, rbp
jle L1
...

L3: call transferToInterpreter

mov r14, 0
mov r13, 0
jmp L2

L1: safepoint
mov rax, r13
add rax, r14
jo L3
inc r13
mov r14, rax

L2: cmp r13, rbp
jle L1
...

L3: call transferToInterpreter

Truffle gives you escape analysis for free!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Polyglot

87

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 88

Language	Registration
public final class SLMain {

public static void main(String[] args) throws IOException {
System.out.println("== running on " + Truffle.getRuntime().getName());

PolyglotEngine engine = PolyglotEngine.newBuilder().build();
Source source = Source.fromFileName(args[0]);
Value result = engine.eval(source);

}
}

PolyglotEngine is the entry point to execute source code

@TruffleLanguage.Registration(name = "SL", version = "0.12", mimeType = SLLanguage.MIME_TYPE)
public final class SLLanguage extends TruffleLanguage<SLContext> {

public static final String MIME_TYPE = "application/x-sl";

public static final SLLanguage INSTANCE = new SLLanguage();

@Override
protected SLContext createContext(Env env) { ... }

@Override
protected CallTarget parse(Source source, Node node, String... argumentNames) throws IOException { ... }

Language implementation lookup is via mime type

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

The	Polyglot	Diamond

89

Polyglot	VM

Truffle

Graal VM

Truffle:	
Language	implementation	framework	
with	language	agnostic	tooling

JavaScript Ruby R LLVM

Language	Developer

Language	User	/	Integrator

Your	Language

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 90

Graal VM	Multi-Language	Shell

Ruby>
def rubyadd(a, b)

a + b;
end
Truffle::Interop.export_method(:rubyadd);

JS>
rubyadd = Interop.import("rubyadd")
function jssum(v) {

var sum = 0;
for (var i = 0; i < v.length; i++) {

sum = Interop.execute(rubyadd, sum, v[i]);
}
return sum;

}
Interop.export("jssum", jssum)

R>
v <- runif(1e8);
jssum <- .fastr.interop.import("jssum")
jssum(NULL, v)

Shell is part of Graal VM download

Start bin/graalvm

Add a vector of numbers using three languages:

Explicit export and import of symbols (methods)

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

High-Performance	Language	Interoperability	(1)

91

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

High-Performance	Language	Interoperability	(2)

92

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

More	Details	on	Language	Integration

93

http://dx.doi.org/10.1145/2816707.2816714

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 94

Cross-Language	Method	Dispatch
public abstract class SLDispatchNode extends Node {

@Specialization(guards = "isForeignFunction(function)")
protected static Object doForeign(VirtualFrame frame, TruffleObject function, Object[] arguments,

@Cached("createCrossLanguageCallNode(arguments)") Node crossLanguageCallNode,
@Cached("createToSLTypeNode()") SLForeignToSLTypeNode toSLTypeNode) {

try {
Object res = ForeignAccess.sendExecute(crossLanguageCallNode, frame, function, arguments);
return toSLTypeNode.executeConvert(frame, res);

} catch (ArityException | UnsupportedTypeException | UnsupportedMessageException e) {
throw SLUndefinedNameException.undefinedFunction(function);

}
}

protected static boolean isForeignFunction(TruffleObject function) {
return !(function instanceof SLFunction);

}
protected static Node createCrossLanguageCallNode(Object[] arguments) {

return Message.createExecute(arguments.length).createNode();
}
protected static SLForeignToSLTypeNode createToSLTypeNode() {

return SLForeignToSLTypeNodeGen.create();
}

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 95

Compilation	Across	Language	Boundaries
Machine code for loop:

function main() {
eval("application/x-ruby",

"def add(a, b) a + b; end;");
eval("application/x-ruby",

"Truffle::Interop.export_method(:add);");
...

}

function loop(n) {
add = import("add");

i = 0;
sum = 0;
while (i <= n) {

sum = add(sum, i);
i = add(i, 1);

}
return sum;

}

Mixed SL and Ruby source code:
mov r14, 0
mov r13, 0
jmp L2

L1: safepoint
mov rax, r13
add rax, r14
jo L3
inc r13
mov r14, rax

L2: cmp r13, rbp
jle L1
...

L3: call transferToInterpreter

Truffle gives you language interop for free!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Polyglot	Example:	Mixing	Ruby	and	JavaScript

96

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 97

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 98

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Graal

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Compiler-VM	Separation

100

Graal

Java Bytecode Parser

High-Level Optimizations

Low-Level Optimizations

Lowering

Code Generation

Bytecodes
and Metadata

Snippets

Machine Code
and Metadata

IR with High-Level Nodes

IR with Low-Level Nodes

Java HotSpot VM

Snippet Definitions

Class Metadata

Code Cache

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Basic	Properties
• Two	interposed	directed	graphs

– Control	flow	graph:	Control	flow	edges	point	“downwards”	in	graph
– Data	flow	graph:	Data	flow	edges	point	“upwards”	in	graph

• Floating	nodes
– Nodes	that	can	be	scheduled	freely	are	not	part	of	the	control	flow	graph
– Avoids	unnecessary	restrictions	of	compiler	optimizations

• Graph	edges	specified	as	annotated	Java	fields	in	node	classes
– Control	flow	edges:	@Successor	fields
– Data	flow	edges:	@Input	fields
– Reverse	edges	(i.e.,	predecessors,	usages)	automatically	maintained	by	Graal

• Always	in	Static	Single	Assignment	(SSA)	form
• Only	explicit	and	structured	loops

– Loop	begin,	end,	and	exit	nodes

• Graph	visualization	tool:	“Ideal	Graph	Visualizer”,	start	using	“./mx.sh	igv”

101

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

IR	Example:	Defining	Nodes

102

public abstract class BinaryNode ... {
@Input protected ValueNode x;
@Input protected ValueNode y;

}

public class IfNode ... {
@Successor BeginNode trueSuccessor;
@Successor BeginNode falseSuccessor;
@Input(InputType.Condition) LogicNode condition;
protected double trueSuccessorProbability;

}

@Input fields: data flow

@Successor fields: control flow

Fields without annotation: normal data properties

public abstract class Node ... {
public NodeClassIterable inputs() { ... }
public NodeClassIterable successors() { ... }

public NodeIterable<Node> usages() { ... }
public Node predecessor() { ... }

}

Base class allows iteration of all inputs / successors

Base class maintains reverse edges: usages / predecessor

Design invariant: a node has at most one predecessor

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

IR	Example:	Ideal	Graph	Visualizer

103

$./mx.sh igv &
$./mx.sh unittest -G:Dump= -G:MethodFilter=String.hashCode GraalTutorial#testStringHashCode

Start the Graal VM with graph dumping enabled

Test that just compiles String.hashCode()

Graph optimization phases

Filters to make graph
more readable

Properties for the
selected node

Colored and filtered graph: control flow in red,
data flow in blue

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

IR	Example:	Control	Flow

104

Fixed node form the control flow graph

Fixed nodes: all nodes that have side effects and need to
be ordered, e.g., for Java exception semantics

Optimization phases can convert fixed to floating nodes

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

IR	Example:	Floating	Nodes

105

Floating nodes have no control flow dependency

Can be scheduled anywhere as long as data dependencies
are fulfilled

Constants, arithmetic functions, phi functions, … are
floating nodes

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

IR	Example:	Loops

106

All loops are explicit and structured

LoopBegin, LoopEnd, LoopExit nodes

Simplifies optimization phases

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

FrameState
• Speculative	optimizations	require	deoptimization

– Restore	Java	interpreter	state	at	safepoints
– Graal tracks	the	interpreter	state	throughout	the	whole	compilation

• FrameState nodes	capture	the	state	of	Java	local	variables	and	Java	expression	stack
• And:	method	+	bytecode index

• Method	inlining produces	nested	frame	states
– FrameState of	callee has	@Input outerFrameState
– Points	to	FrameState of	caller

107

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

IR	Example:	Frame	States

108

State at the beginning of the loop:
Local 0: “this”
Local 1: “h”
Local 2: “val”
Local 3: “i”

public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {

char val[] = value;
for (int i = 0; i < value.length; i++) {

h = 31 * h + val[i];
}
hash = h;

}
return h;

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Important	Optimizations
• Constant	folding,	arithmetic	optimizations,	strength	reduction,	...

– CanonicalizerPhase
– Nodes	implement	the	interface	Canonicalizeable
– Executed	often	in	the	compilation	pipeline
– Incremental	canonicalizer only	looks	at	new	/	changed	nodes	to	save	time

• Global	Value	Numbering
– Automatically	done	based	on	node	equality

109

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 110

A	Simple	Optimization	Phase
public class LockEliminationPhase extends Phase {

@Override
protected void run(StructuredGraph graph) {

for (MonitorExitNode node : graph.getNodes(MonitorExitNode.class)) {
FixedNode next = node.next();
if (next instanceof MonitorEnterNode) {

MonitorEnterNode monitorEnterNode = (MonitorEnterNode) next;
if (monitorEnterNode.object() == node.object()) {

GraphUtil.removeFixedWithUnusedInputs(monitorEnterNode);
GraphUtil.removeFixedWithUnusedInputs(node);

}
}

}
}

}

Eliminate unnecessary release-reacquire of a monitor
when no instructions are between

Iterate all nodes of a certain class

Modify the graph

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Type	System	(Stamps)
• Every	node	has	a	Stamp that	describes	the	possible	values	of	the	node

– The	kind	of	the	value	(object,	integer,	float)
– But	with	additional	details	if	available
– Stamps	form	a	lattice	with	meet (=	union)	and	join (=	intersection)	operations

• ObjectStamp
– Declared	type:	the	node	produces	a	value	of	this	type,	or	any	subclass
– Exact	type:	the	node	produces	a	value	of	this	type	(exactly,	not	a	subclass)
– Value	is	never	null	(or	always	null)

• IntegerStamp
– Number	of	bits	used
– Minimum	and	maximum	value
– Bits	that	are	always	set,	bits	that	are	never	set

• FloatStamp

111

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Speculative	Optimizations

112

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Motivating	Example	for	Speculative	Optimizations
• Inlining of	virtual	methods

– Most	methods	in	Java	are	dynamically	bound
– Class	Hierarchy	Analysis
– Inline	when	only	one	suitable	method	exists

• Compilation	of	foo()	when	only	A	loaded
– Method	getX()	is	inlined
– Same	machine	code	as	direct	field	access
– No	dynamic	type	check

• Later	loading	of	class	B
– Discard	machine	code	of	foo()
– Recompile	later	without	inlining

• Deoptimization
– Switch	to	interpreter	in	the	middle	of	foo()
– Reconstruct	interpreter	stack	frames
– Expensive,	but	rare	situation
– Most	classes	already	loaded	at	first	compile

void foo() {
A a = create();
a.getX();

}

class A {
int x;

int getX() {
return x;

}
}

class B extends A {
int getX() {

return ...
}

}

113

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Expression	Stack

Local	Variables

Interpreter	Information

Dynamic	Link,	Return	Address

enter
call create
move [eax + 8] -> esi
leave
return

Deoptimization
main()
Interpreter	Frame

Expression	Stack

Local	Variables

Interpreter	Information

Dynamic	Link,	Return	Address

Dynamic	Link,	Return	Address

Spill	Slots
foo()
Compiled	Frame

create()
Interpreter	Frame

Stack	grows
downwards

Machine	code	for	foo():

114

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Expression	Stack

Local	Variables

Interpreter	Information

Dynamic	Link,	Return	Address

Deoptimization
main()
Interpreter	Frame

Expression	Stack

Local	Variables

Interpreter	Information

Dynamic	Link,	Return	Address

Dynamic	Link,	Return	Address

Spill	Slots
foo()
Compiled	Frame

create()
Interpreter	Frame

Stack	grows
downwards

Machine	code	for	foo():
jump Interpreter
call create
call Deoptimization
leave
return

115

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Deoptimization
main()
Interpreter	Frame

Expression	Stack

Local	Variables

Interpreter	Information

Dynamic	Link,	Return	Address

Dynamic	Link,	Return	Address

Spill	Slots
foo()
Compiled	Frame

Stack	grows
downwards

Machine	code	for	foo():
jump Interpreter
call create
call Deoptimization
leave
return

116

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

foo()
Interpreter	Frame

Expression	Stack

Local	Variables

Interpreter	Information

Dynamic	Link,	Return	Address

Deoptimization
main()
Interpreter	Frame

Expression	Stack

Local	Variables

Interpreter	Information

Dynamic	Link,	Return	Address

Stack	grows
downwards

Machine	code	for	foo():
jump Interpreter
call create
call Deoptimization
leave
return

117

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Speculative	Optimization

118

int f1;
int f2;

void speculativeOptimization(boolean flag) {
f1 = 41;
if (flag) {
f2 = 42;
return;

}
f2 = 43;

}

Java source code:

Assumption: method speculativeOptimization is always
called with parameter flag set to false

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

After	Parsing	without	Speculation

119

Without speculative optimizations: graph covers the whole
method

int f1;
int f2;

void speculativeOptimization(boolean flag) {
f1 = 41;
if (flag) {

f2 = 42;
return;

}
f2 = 43;

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

After	Parsing	with	Speculation

120

Speculation Assumption: method test is always called
with parameter flag set to false

No need to compile the code inside the if block

Bytecode parser creates the if block, but stops parsing
and fills it with DeoptimizeNode

Speculation is guided by profiling information collected by
the VM before compilation

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

After	Converting	Deoptimize to	Fixed	Guard

121

ConvertDeoptimizeToGuardPhase replaces the if-
deoptimize with a single FixedGuardNode

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Frame	states	after	Parsing

122

State changing nodes have a FrameState

Guard does not have a FrameState

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

After	Lowering:	Guard	is	Floating

123

First lowering replaces the FixedGuardNode with a floating
GuardNode

ValueAnchorNode ensures the floating guard is executed
before the second write

Guard can be scheduled within these constraints

Dependency of floating guard on StartNode ensures guard
is executed after the method start

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

After	Replacing	Guard	with	If-Deoptimize

124

GuardLoweringPhase replaces GuardNode with if-
deoptimize

The if is inserted at the best (earliest) position – it is before
the write to field f1

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Frame	States	are	Still	Unchanged

125

State changing nodes have a FrameState

Deoptimize does not have a FrameState

Up to this optimization stage, nothing has changed
regarding FrameState nodes

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

After	FrameStateAssignmentPhase

126

State changing nodes do not have a FrameState

Deoptimize does have a FrameState

FrameStateAssignmentPhase assigns every
DeoptimizeNode the FrameState of the preceding state
changing node

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Final	Graph	After	Optimizations

127

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Frame	States:	Two	Stages	of	Compilation
First	Stage:	Guard	Optimizations Second	Stage:	Side-effects	Optimizations

FrameState is	on nodes	with	side effects ...	nodes	that	deoptimize

Nodes	with side	effects	cannot be	moved	within	the	graph ...	can	be	moved

Nodes that	deoptimize	can	be	moved	within	the	graph ...	cannot	be	moved

New	guards	can be	introduced	anywhere	
at	any	time.	Redundant	guards	can	be	
eliminated.	Most	optimizations	are	
performed	in	this	stage.

Nodes with	side	effects	can	be	reordered	
or	combined.

StructuredGraph.guardsStage = GuardsStage.FLOATING_GUARDS GuardsStage.AFTER_FSA

Graph	is	in	this	stage	before	GuardLoweringPhase ...	after	FrameStateAssignmentPhase

128

Implementation note: Between GuardLoweringPhase and FrameStateAssignmentPhase, the graph is in stage
GuardsStage.FIXED_DEOPTS. This stage has no benefit for optimization, because it has the restrictions of both major stages.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Optimizations	on	Floating	Guards
• Redundant	guards	are	eliminated

– Automatically	done	by	global	value	numbering
– Example:	multiple	bounds	checks	on	the	same	array

• Guards	are	moved	out	of	loops
– Automatically	done	by	scheduling
– GuardLoweringPhase assigns	every	guard	a	dependency	on	the	reverse	postdominator of	the	original	
fixed	location
• The	block	whose	execution	guarantees	that	the	original	fixed	location	will	be	reached	too

– For	guards	in	loops	(but	not	within	a	if	inside	the	loop),	this	is	a	block	before	the	loop

• Speculative	optimizations	can	move	guards	further	up
– This	needs	a	feedback	cycle	with	the	interpreter:	if	the	guard	actually	triggers	deoptimization,	
subsequent	recompilation	must	not	move	the	guard	again

129

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Snippets

130

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

The	Lowering	Problem
• How	do	you	express	the	low-level	semantics	of	a	high-level	operation?
• Manually	building	low-level	IR	graphs

– Tedious	and	error	prone
• Manually	generating	machine	code

– Tedious	and	error	prone
– Probably	too	low	level	(no	more	compiler	optimizations	possible	after	lowering)

• Solution:	Snippets
– Express	the	semantics	of	high-level	Java	operations	in	low-level	Java	code

• Word type	representing	a	machine	word	allows	raw	memory	access
– Simplistic	view:	replace	a	high-level	node	with	an	inlined method
– To	make	it	work	in	practice,	a	few	more	things	are	necessary

131

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 132

Snippet	Lifecycle

Bytecodes Prepared
IR Graph Specialized

IR Graphs

Preparation Specialization Instantiation

Once Few Times Many Times

...
aload_0
getfield
ifne 10
aload_1
arraylength
...

Frequency:

Java Bytecode Parsing

Node Intrinsification
Exhaustive Method Inlining

Constant Folding, Canonicalization

Graph Duplication

Node Intrinsification
Constant Folding, Canonicalization

Constant Parameter Replacement
Graph Duplication
Graph Inlining in Target Method
Constant Folding, Canonicalization

Steps:

Target Method
with High-level

Node

Specialized
 IR Graph
of Snippet

Target Method
with Low-level

Nodes

+ =

...

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 133

Snippet	Example:	instanceOf with	Profiling	Information
@Snippet
static Object instanceofWithProfile(Object object,

@ConstantParameter boolean nullSeen,
@VarargsParameter Word[] profiledHubs,
@VarargsParameter boolean[] hubIsPositive) {

if (probability(NotFrequent, object == null)) {
if (!nullSeen) {
deoptimize(OptimizedTypeCheckViolated);
throw shouldNotReachHere();

}
isNullCounter.increment();
return false;

}
Anchor afterNullCheck = anchor();
Word objectHub = loadHub(object, afterNullCheck);

explodeLoop();
for (int i = 0; i < profiledHubs.length; i++) {
if (profiledHubs[i].equal(objectHub)) {
profileHitCounter.increment();
return hubIsPositive[i];

}
}
deoptimize(OptimizedTypeCheckViolated);
throw shouldNotReachHere();

}

Specialization for one type and never null:Constant folding during specialization

Loop unrolling during specialization

Loop unrolling during specialization

Node intrinsicNode intrinsicNode intrinsic

Debug / profiling code eliminated by constant folding and
dead code elimination

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 134

Snippet	Example:	Specialization	for	One	Type
@Snippet
static Object instanceofWithProfile(Object object,

@ConstantParameter boolean nullSeen,
@VarargsParameter Word[] profiledHubs,
@VarargsParameter boolean[] hubIsPositive) {

if (probability(NotFrequent, object == null)) {
if (!nullSeen) {
deoptimize(OptimizedTypeCheckViolated);
throw shouldNotReachHere();

}
isNullCounter.increment();
return false;

}
Anchor afterNullCheck = anchor();
Word objectHub = loadHub(object, afterNullCheck);

explodeLoop();
for (int i = 0; i < profiledHubs.length; i++) {
if (profiledHubs[i].equal(objectHub)) {
profileHitCounter.increment();
return hubIsPositive[i];

}
}
deoptimize(OptimizedTypeCheckViolated);
throw shouldNotReachHere();

}

falsetrue

guard

falsetrue
If

Begin Begin

Deoptimize

Return

IsNull

LoadHub

P:object

P:profiledHubs-0

P:hubIsPositive-0

Start

If

==

Begin Begin

Deoptimize

IR Node

Control-flow Edge

Data-flow Edge

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 135

Node	Intrinsics
class LoadHubNode extends FloatingGuardedNode {

@Input ValueNode object;

LoadHubNode(ValueNode object, ValueNode guard) {
super(guard);
this.object = object;

}
}

@NodeIntrinsic(LoadHubNode.class)
static native Word loadHub(Object object, Object guard);

class DeoptimizeNode extends ControlSinkNode {

final Reason reason;

DeoptimizeNode(Reason reason) {
this.object = object;

}
}

@NodeIntrinsic(DeoptimizeNode.class)
static native void deoptimize(

@ConstantNodeParameter Reason reason);

Calling the node intrinsic reflectively instantiates the node
using the matching constructor

Constructor with non-Node parameter requires node
intrinsic parameter to be a constant during snippet
specialization

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 136

Snippet	Instantiation
SnippetInfo instanceofWithProfile = snippet(InstanceOfSnippets.class, "instanceofWithProfile");

void lower(InstanceOfNode node) {
ValueNode object = node.getObject();
JavaTypeProfile profile = node.getProfile();

if (profile.totalProbability() > threshold) {
int numTypes = profile.getNumTypes();
Word[] profiledHubs = new Word[numTypes];
boolean hubIsPositive = new boolean[numTypes];
for (int i = 0; i < numTypes; i++) {
profiledHubs[i] = profile.getType(i).getHub();
hubIsPositive[i] = profile.isPositive(i);

}

Args args = new Args(instanceofWithProfile);
args.add(object);
args.addConst(profile.getNullSeen());
args.addVarargs(profiledHubs);
args.addVarargs(hubIsPositive);

SnippetTemplate s = template(args);
s.instantiate(args, node);

} else {
// Use a different snippet.

}
}

Node argument: formal parameter of snippet is replaced
with this node

Constant argument for snippet specialization

Snippet preparation and specialization

Snippet instantiation

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example	in	IGV
• The	previous	slides	are	slightly	simplified

– In	reality	the	snippet	graph	is	a	bit	more	complex
– But	the	end	result	is	the	same

137

static class A { }
static class B extends A { }

static int instanceOfUsage(Object obj) {
if (obj instanceof A) {

return 42;
} else {

return 0;
}

}

Java source code:

./mx.sh igv &

./mx.sh unittest -G:Dump= -G:MethodFilter=GraalTutorial.instanceOfUsage GraalTutorial#testInstanceOfUsage

Command line to run example:

Assumption: method instanceOfUsage is always called
with parameter obj having class A

The snippets for lowering of instanceOf are in class
InstanceOfSnippets

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Method	Before	Lowering

138

InstanceOfNode has profiling information: only type A seen
in interpreter

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Snippet	After	Parsing

139

IGV shows a nested graph for snippet preparation and
specialization

Snippet graph after bytecode parsing is big, because no
optimizations have been performed yet

Node intrinsics are still method calls

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Snippet	After	Preparation

140

Calls to node intrinsics are replaced with actual nodes

Constant folding and dead code elimination removed
debugging code and counters

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Snippet	After	Specialization

141

Constant snippet parameter is constant folded

Loop is unrolled for length 1

This much smaller graph is cached for future instantiations
of the snippet

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Method	After	Lowering

142

InstanceOfNode has been replaced with snippet graph

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Compiler	Intrinsics

143

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Compiler	Intrinsics
• Called	“method	substitution”	in	Graal

– A	lot	mechanism	and	infrastructure	shared	with	snippets

• Use	cases
– Use	a	special	hardware	instruction	instead	of	calling	a	Java	method
– Replace	a	runtime	call	into	the	VM	with	low-level	Java	code

• Implementation	steps
– Define	a	node	for	the	intrinsic	functionality
– Define	a	method	substitution	for	the	Java	method	that	should	be	intrinsified

• Use	a	node	intrinsic	to	create	your	node
– Define	a	LIR	instruction	for	your	functionality
– Generate	this	LIR	instruction	in	the	LIRLowerable.generate()	method	of	your	node
– Generate	machine	code	in	your	LIRInstruction.emitCode()	method

144

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Intrinsification of	Math.sin()

145

static double intrinsicUsage(double val) {
return Math.sin(val);

}

Java source code:

./mx.sh igv &

./mx.sh c1visualizer &

./mx.sh unittest -G:Dump= -G:MethodFilter=GraalTutorial.intrinsicUsage GraalTutorial#testIntrinsicUsage

Command line to run example:

Java implementation of Math.sin() calls native code via JNI

C1Visualizer shows the LIR and generated machine code

x86 provides an FPU instruction: fsin

Load the generated .cfg file with C1Visualzier

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

After	Parsing

146

Regular method call to Math.sin()

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

@ClassSubstitution(value = java.lang.Math.class)
public class MathSubstitutionsX86 {

@MethodSubstitution(guard = UnsafeSubstitutions.GetAndSetGuard.class)
public static double sin(double x) {
if (abs(x) < PI_4) {
return MathIntrinsicNode.compute(x, Operation.SIN);

} else {
return callDouble(ARITHMETIC_SIN, x);

}
}

public static final ForeignCallDescriptor ARITHMETIC_SIN = new ForeignCallDescriptor("arithmeticSin", double.class, double.class);
}

147

Method	Substitution
public class MathIntrinsicNode extends FloatingNode implements ArithmeticLIRLowerable {
public enum Operation {LOG, LOG10, SIN, COS, TAN }

@Input protected ValueNode value;
protected final Operation operation;

public MathIntrinsicNode(ValueNode value, Operation op) { ... }
@NodeIntrinsic
public static native double compute(double value, @ConstantNodeParameter Operation op);

public void generate(NodeMappableLIRBuilder builder, ArithmeticLIRGenerator gen) { ... }
}

Class that is substituted

Node with node intrinsic shared several Math methods

The x86 instruction fsin can only be used for a small input
values

Runtime call into the VM used for all other values

LIR Generation

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

After	Inlining the	Substituted	Method

148

MathIntrinsicNode, AbsNode, and ForeignCallNode are all
created by node intrinsics

Graph remains unchanged throughout all further
optimization phases

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 149

LIR	Instruction
public class AMD64MathIntrinsicOp extends AMD64LIRInstruction {
public enum IntrinsicOpcode { SIN, COS, TAN, LOG, LOG10 }

@Opcode private final IntrinsicOpcode opcode;
@Def protected Value result;
@Use protected Value input;

public AMD64MathIntrinsicOp(IntrinsicOpcode opcode, Value result, Value input) {
this.opcode = opcode;
this.result = result;
this.input = input;

}

@Override
public void emitCode(CompilationResultBuilder crb, AMD64MacroAssembler masm) {
switch (opcode) {
case LOG: masm.flog(asDoubleReg(result), asDoubleReg(input), false); break;
case LOG10: masm.flog(asDoubleReg(result), asDoubleReg(input), true); break;
case SIN: masm.fsin(asDoubleReg(result), asDoubleReg(input)); break;
case COS: masm.fcos(asDoubleReg(result), asDoubleReg(input)); break;
case TAN: masm.ftan(asDoubleReg(result), asDoubleReg(input)); break;
default: throw GraalInternalError.shouldNotReachHere();

}
}

}

LIR uses annotation to specify input, output, or temporary
registers for an instruction

Finally the call to the assembler to emit the bits

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

LIR	Before	Register	Allocation

150

The SIN instruction we are looking for

Runtime call into the VM (without JNI overhead)

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

The	ecosystem

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Truffle	System	Structure

Low-footprint VM, also
suitable for embedding

Common API separates
language implementation,
optimization system,
and tools (debugger)

Language agnostic
dynamic compiler

AST Interpreter for
every language

Integrate with Java
applications

Substrate	VM

Graal

JavaScript Ruby LLVMR

Graal VM

…

Truffle

152

Your language
should be here!

Tools

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Truffle	Language	Projects

• JavaScript:	JKU	Linz,	Oracle	Labs
– http://www.oracle.com/technetwork/oracle-labs/program-languages/

• Ruby:	Oracle	Labs,	included	in	JRuby
– Open	source:	https://github.com/jruby/jruby

• R:	JKU	Linz,	Purdue	University,	Oracle	Labs
– Open	source:	https://github.com/graalvm/fastr

• Sulong (LLVM	Bitcode):	JKU	Linz,	Oracle	Labs
– Open	source:	https://github.com/graalvm/sulong

• Python:	UC	Irvine
– Open	source:	https://bitbucket.org/ssllab/zippy/

• SOM	(Newspeak,	Smalltalk):	Stefan	Marr
– Open	source:	https://github.com/smarr/

153

Some	languages	that	we	are	aware	of

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Open	Source	Code	on	GitHub

https://github.com/graalvm

154

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 155

Binary	Snapshots	on	OTN

Search for "OTN Graal"

http://www.oracle.com/technetwork/oracle-
labs/program-languages/downloads/

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Results

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	Disclaimers
• All	Truffle	numbers	reflect	a	development	snapshot

– Subject	to	change	at	any	time	(hopefully	improve)
– You	have	to	know	a	benchmark	to	understand	why	it	is	slow	or	fast

• We	are	not	claiming	to	have	complete	language	implementations
– JavaScript:	passes	100%	of	ECMAscript standard	tests

• Working	on	full	compatibility	with	V8	for	Node.JS
– Ruby:	passing	100%	of	RubySpec language	tests

• Passing	around	90%	of	the	core	library	tests
– R:	prototype,	but	already	complete	enough	and	fast	for	a	few	selected	workloads

• Benchmarks	that	are	not	shown
– may	not	run	at	all,	or
– may	not	run	fast

157

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

0

0.5

1

1.5

2

2.5

3
SPECjvm2008

Server
Graal

0

0.5

1

1.5

2

2.5

3

critical max

SPECjbb20013

0

1

2

3

4

5

6
ScalaDaCapo

0

0.5

1

1.5

2
DaCapo	9.12

158

Graal Benchmark	Results

Higher	is	better,
normalized	to
Client	compiler.

Results	are	not	SPEC	
compliant,	but	follow	the	
rules	for	research	use.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance:	GraalVM Summary

159

1.02 1.2

4.1
4.5

0.85 0.9

0

1

2

3

4

5

Java Scala Ruby R Native JavaScript

Speedup,	higher	is	better

Performance	relative	to:
HotSpot/Server,	HotSpot/Server	running	JRuby,	GNU	R,	LLVM	AOT	compiled,	V8

Graal
Best	Specialized	Competition

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance:	JavaScript

160

0

0.2

0.4

0.6

0.8

1

1.2

1.4

box2d Deltablue Crypto EarleyBoyer Gameboy NavierStokes Richards Raytrace Splay Geomean

Speedup,	higher	is	better

Performance	relative	to	V8

JavaScript performance: similar to V8

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance:	Ruby	Compute-Intensive	Kernels

161

0

50

100

150

200

250

300

350

Speedup,	higher	is	better

Performance	relative	to	JRuby	running	with	Java	HotSpot server	compiler	

Huge speedup because Truffle can optimize
through Ruby metaprogramming

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance:	R	with	Scalar	Code

162

0
10
20
30
40
50
60
70
80
90
100

Speedup,	higher	is	better

Performance	relative	to	GNU	R	with	bytecode interpreter

660xHuge speedups on scalar code, GNU R is only
optimized for vector operations

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Will	I	be	able	to	use	Truffle
and	Graal for	real?

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

Graal

Truffle

JS RubyR

Java

C++
JVMCI

(JVM	Compiler	Interface)

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

Graal

Truffle

JS RubyR

via	Maven	etc

Java	9

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Will	I	be	able	to	use	Truffle
and	Graal for	real?

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Oracle Labs (continued)
Adam Welc
Till Westmann
Christian Wimmer
Christian Wirth
Paul Wögerer
Mario Wolczko
Andreas Wöß
Thomas Würthinger

Oracle Labs Interns
Shams Imam
Stephen Kell
Gero Leinemann
Julian Lettner
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Oracle Labs Alumni
Erik Eckstein
Christos Kotselidis

Acknowledgements
Oracle Labs
Danilo Ansaloni
Stefan Anzinger
Daniele Bonetta
Matthias Brantner
Laurent Daynès
Gilles Duboscq
Michael Haupt
Mick Jordan
Peter Kessler
Hyunjin Lee
David Leibs
Kevin Menard
Tom Rodriguez
Roland Schatz
Chris Seaton
Doug Simon
Lukas Stadler
Michael Van De Vanter

JKU Linz
Prof. Hanspeter Mössenböck
Benoit Daloze
Josef Eisl
Matthias Grimmer
Christian Häubl
Josef Haider
Christian Humer
Christian Huber
Manuel Rigger
Bernhard Urban

University of Edinburgh
Christophe Dubach
Juan José Fumero Alfonso
Ranjeet Singh
Toomas Remmelg

LaBRI
Floréal Morandat

University of California, Irvine
Prof. Michael Franz
Codrut Stancu
Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj
Lei Zhao

T. U. Dortmund
Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Prof. Duncan Temple Lang
Nicholas Ulle

167

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

We’re	interested	in	talking	to	people	about
• Using	Truffle	or	Graal directly
• Running	Java	programs	on	Graal
• Running	JS,	Ruby	or	R	programs	on	our	implementations
• Researching	metaprogramming	by	modifying	these	implementations
• Internships	for	these	projects	and	others

chris.seaton@oracle.com

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Backup	slides

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Truffle	Mindset
• Do	not	optimize	interpreter	performance

– Only	optimize	compiled	code	performance

• Collect	profiling	information	in	interpreter
– Yes,	it	makes	the	interpreter	slower
– But	it	makes	your	compiled	code	faster

• Do	not	specialize	nodes	in	the	parser,	e.g.,	via	static	analysis
– Trust	the	specialization	at	run	time

• Keep	node	implementations	small	and	simple
– Split	complex	control	flow	into	multiple	nodes,	use	node	rewriting

• Use	final fields
– Compiler	can	aggressively	optimize	them
– Example:	An	if on	a	final field	is	optimized	away	by	the	compiler
– Use	profiles	or	@CompilationFinal if	the	Java	final is	too	restrictive

• Use	microbenchmarks to	assess	and	track	performance	of	specializations
– Ensure	and	assert	that	you	end	up	in	the	expected	specialization

170

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Truffle	Mindset:	Frames
• Use	VirtualFrame,	and	ensure	it	does	not	escape

– Graal must	be	able	to	inline	all	methods	that	get	the	VirtualFrame parameter
– Call	must	be	statically	bound	during	compilation
– Calls	to	static or	privatemethods	are	always	statically	bound
– Virtual	calls	and	interface	calls	work	if	either

• The	receiver	has	a	known	exact	type,	e.g.,	comes	from	a	final field
• The	method	is	not	overridden	in	a	subclass

• Important	rules	on	passing	around	a	VirtualFrame
– Never	assign	it	to	a	field
– Never	pass	it	to	a	recursive	method

• Graal cannot	inline	a	call	to	a	recursive	method

• Use	a	MaterializedFrame if	a	VirtualFrame is	too	restrictive
– But	keep	in	mind	that	access	is	slower

171

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Objects

172

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Objects
• Most	dynamic	languages	have	a	flexible	object	model

– Objects	are	key-value	stores
– Add	new	properties
– Change	the	type	of	properties
– But	the	detailed	semantics	vary	greatly	between	languages

• Truffle	API	provides	a	high-performance,	but	still	customizable	object	model
– Single-object	storage	for	objects	with	few	properties
– Extension	arrays	for	objects	with	many	properties
– Type	specialization,	unboxed	storage	of	primitive	types
– Shapes	(hidden	classes)	describe	the	location	of	properties

173

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Object	API	Classes
• Layout:	one	singleton	per	language	that	defines	basic	properties
• ObjectType:	one	singleton	of	a	language-specific	subclass
• Shape:	a	list	of	properties

– Immutable:	adding	or	deleting	a	property	yields	a	new	Shape
– Identical	series	of	property	additions	and	deletions	yield	the	same	Shape
– Shape	can	be	invalidated,	i.e.,	superseded	by	a	new	Shape	with	a	better	storage	layout

• Property:	mapping	from	a	name	to	a	storage	location
• Location:	immutable	typed	storage	location

• DynamicObject:	storage	of	the	actual	data
– Many	DynamicObject instances	share	the	same	layout	described	by	a	Shape

174

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Object	Allocation
public final class SLContext extends ExecutionContext {

private static final Layout LAYOUT = Layout.createLayout();

private final Shape emptyShape = LAYOUT.createShape(SLObjectType.SINGLETON);

public DynamicObject createObject() {
return emptyShape.newInstance();

}

public static boolean isSLObject(TruffleObject value) {
return LAYOUT.getType().isInstance(value)

&& LAYOUT.getType().cast(value).getShape().getObjectType() == SLObjectType.SINGLETON;
}

}

public final class SLObjectType extends ObjectType {
public static final ObjectType SINGLETON = new SLObjectType();

}

175

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 176

Object	Layout	Transitions	(1)

var x = {};
x.foo = 0;
x.bar = 0;
// + subtree A

empty

foo

bar

int

int

x

A

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 177

Object	Layout	Transitions	(2)

var x = {};
x.foo = 0;
x.bar = 0;
// + subtree A

var y = {};
y.foo = 0.5;
y.bar = "foo";
// + subtree B

empty

foo

bar

int

int

x

A

bar

double

String

y

B

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 178

Object	Layout	Transitions	(3)

var x = {};
x.foo = 0;
x.bar = 0;
// + subtree A

var y = {};
y.foo = 0.5;
y.bar = "foo";
// + subtree B

x.foo += 0.2
// + subtree C

empty

foo

bar

int

int

A

bar

double

String

B

intC

yx

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

More	Details	on	Object	Layout

179

http://dx.doi.org/10.1145/2647508.2647517

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Stack	Walking	and	Frame	Introspection

180

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Stack	Walking	Requirements
• Requirements

– Visit	all	guest	language	stack	frames
• Abstract	over	interpreted	and	compiled	frames

– Allow	access	to	frames	down	the	stack
• Read	and	write	access	is	necessary	for	some	languages

– No	performance	overhead	
• No	overhead	in	compiled	methods	as	long	as	frame	access	is	not	used
• No	manual	linking	of	stack	frames
• No	heap-based	stack	frames

• Solution	in	Truffle
– Stack	walking	is	performed	by	Java	VM
– Truffle	runtime	exposes	the	Java	VM	stack	walking	via	clean	API
– Truffle	runtime	abstracts	over	interpreted	and	compiled	frames
– Transfer	to	interpreter	used	for	write	access	of	frames	down	the	stack

181

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 182

Stack	Walking
public abstract class SLStackTraceBuiltin extends SLBuiltinNode {

@TruffleBoundary
private static String createStackTrace() {

StringBuilder str = new StringBuilder();

Truffle.getRuntime().iterateFrames(frameInstance -> {
dumpFrame(str, frameInstance.getCallTarget(), frameInstance.getFrame(FrameAccess.READ_ONLY, true));
return null;

});

return str.toString();
}

private static void dumpFrame(StringBuilder str, CallTarget callTarget, Frame frame) {
if (str.length() > 0) { str.append("\n"); }

str.append("Frame: ").append(((RootCallTarget) callTarget).getRootNode().toString());
FrameDescriptor frameDescriptor = frame.getFrameDescriptor();
for (FrameSlot s : frameDescriptor.getSlots()) {

str.append(", ").append(s.getIdentifier()).append("=").append(frame.getValue(s));
}

}
}

TruffleRuntime provides stack walking

FrameInstance is a handle to a guest language frame

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 183

Stack	Frame	Access
public interface FrameInstance {

public static enum FrameAccess {
NONE,
READ_ONLY,
READ_WRITE,
MATERIALIZE

}

Frame getFrame(FrameAccess access, boolean slowPath);

CallTarget getCallTarget();
}

The more access you request, the slower it is:
Write access requires transfer to interpreter

Access to the Frame and the CallTarget gives you full
access to your guest language’s data structures and the
AST of the method

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Graal API

184

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Graal API	Interfaces
• Interfaces	for	everything	coming	from	a	.class	file

– JavaType,	JavaMethod,	JavaField,	ConstantPool,	Signature,	…

• Provider	interfaces
– MetaAccessProvider,	CodeCacheProvider,	ConstantReflectionProvider,	…

• VM	implements	the	interfaces,	Graal uses	the	interfaces

• CompilationResult is	produced	by	Graal
– Machine	code	in	byte[] array	
– Pointer	map	information	for	garbage	collection
– Information	about	local	variables	for	deoptimization
– Information	about	speculations	performed	during	compilation

185

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Dynamic	Class	Loading
• From	the	Java	specification:	Classes	are	loaded	and	initialized	as	late	as	possible

– Code	that	is	never	executed	can	reference	a	non-existing	class,	method,	or	field
– Invoking	a	method	does	not	make	the	whole	method	executed
– Result:	Even	a	frequently	executed	(=	compiled)	method	can	have	parts	that	reference	non-existing	elements
– The	compiler	must	not	trigger	class	loading	or	initialization,	and	must	not	throw	linker	errors

• Graal API	distinguishes	between	unresolved	and	resolved	elements
– Interfaces	for	unresolved	elements:	JavaType,	JavaMethod,	JavaField

• Only	basic	information:	name,	field	kind,	method	signature
– Interfaces	for	resolved	elements:	ResolvedJavaType,	ResolvedJavaMethod,	ResolvedJavaField

• All	the	information	that	Java	reflection	gives	you,	and	more

• Graal as	a	JIT	compiler	does	not	trigger	class	loading
– Replace	accesses	to	unresolved	elements	with	deoptimization,	let	interpreter	then	do	the	loading	and	linking

• Graal as	a	static	analysis	framework	can	trigger	class	loading

186

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 187

Important	Provider	Interfaces
public interface MetaAccessProvider {

ResolvedJavaType lookupJavaType(Class<?> clazz);
ResolvedJavaMethod lookupJavaMethod(Executable reflectionMethod);
ResolvedJavaField lookupJavaField(Field reflectionField);
...

}

Convert Java reflection objects to Graal API

public interface ConstantReflectionProvider {
Boolean constantEquals(Constant x, Constant y);
Integer readArrayLength(JavaConstant array);
...

}

Look into constants – note that the VM can deny the
request, maybe it does not even have the information

It breaks the compiler-VM separation to get the raw object
encapsulated in a Constant – so there is no method for it

public interface CodeCacheProvider {
InstalledCode addMethod(ResolvedJavaMethod method, CompilationResult compResult,

SpeculationLog speculationLog, InstalledCode predefinedInstalledCode);
InstalledCode setDefaultMethod(ResolvedJavaMethod method, CompilationResult compResult);
TargetDescription getTarget();
...

}
Install compiled code into the VM

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 188

Example:	Print	Bytecodes	of	a	Method
/* Entry point object to the Graal API from the hosting VM. */
RuntimeProvider runtimeProvider = Graal.getRequiredCapability(RuntimeProvider.class);

/* The default backend (architecture, VM configuration) that the hosting VM is running on. */
Backend backend = runtimeProvider.getHostBackend();

/* Access to all of the Graal API providers, as implemented by the hosting VM. */
Providers providers = backend.getProviders();

/* The provider that allows converting reflection objects to Graal API. */
MetaAccessProvider metaAccess = providers.getMetaAccess();

Method reflectionMethod = ...
ResolvedJavaMethod method = metaAccess.lookupJavaMethod(reflectionMethod);

/* ResolvedJavaMethod provides all information that you want about a method, for example, the bytecodes. */
byte[] bytecodes = method.getCode();

/* BytecodeDisassembler shows you how to iterate bytecodes, how to access type information, and more. */
System.out.println(new BytecodeDisassembler().disassemble(method));

./mx.sh unittest GraalTutorial#testPrintBytecodes

Command line to run example:

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Frames	and	Local	Variables

189

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Frame	Layout
• In	the	interpreter,	a	frame	is	an	object	on	the	heap

– Allocated	in	the	function	prologue
– Passed	around	as	parameter	to	execute() methods

• The	compiler	eliminates	the	allocation
– No	object	allocation	and	object	access
– Guest	language	local	variables	have	the	same	performance	as	Java	local	variables

• FrameDescriptor:	describes	the	layout	of	a	frame
– A	mapping	from	identifiers	(usually	variable	names)	to	typed	slots
– Every	slot	has	a	unique	index	into	the	frame	object
– Created	and	filled	during	parsing

• Frame
– Created	for	every	invoked	guest	language	function

190

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Frame	Management
• Truffle	API	only	exposes	frame	interfaces

– Implementation	class	depends	on	the	optimizing	system

• VirtualFrame
– What	you	usually	use:	automatically	optimized	by	the	compiler
– Must	never	be	assigned	to	a	field,	or	escape	out	of	an	interpreted	function

• MaterializedFrame
– A	frame	that	can	be	stored	without	restrictions
– Example:	frame	of	a	closure	that	needs	to	be	passed	to	other	function

• Allocation	of	frames
– Factory	methods	in	the	class	TruffleRuntime

191

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Frame	Management
public interface Frame {

FrameDescriptor getFrameDescriptor();
Object[] getArguments();

boolean isType(FrameSlot slot);
Type getType(FrameSlot slot) throws FrameSlotTypeException;
void setType(FrameSlot slot, Type value);

Object getValue(FrameSlot slot);

MaterializedFrame materialize();
}

Rule: Never allocate frames yourself, and never make your own frame implementations

SL types String, SLFunction, and SLNull are stored as Object in the frame

Frames support all Java primitive types, and Object

192

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Local	Variables
@NodeChild("valueNode")
@NodeField(name = "slot", type = FrameSlot.class)
public abstract class SLWriteLocalVariableNode extends SLExpressionNode {

protected abstract FrameSlot getSlot();

@Specialization(guards = "isLongOrIllegal(frame)")
protected long writeLong(VirtualFrame frame, long value) {

getSlot().setKind(FrameSlotKind.Long);
frame.setLong(getSlot(), value);
return value;

}
protected boolean isLongOrIllegal(VirtualFrame frame) {

return getSlot().getKind() == FrameSlotKind.Long || getSlot().getKind() == FrameSlotKind.Illegal;
}
...

@Specialization(contains = {"writeLong", "writeBoolean"})
protected Object write(VirtualFrame frame, Object value) {

getSlot().setKind(FrameSlotKind.Object);
frame.setObject(getSlot(), value);
return value;

}
}

193

If we cannot specialize on a single primitive type,
we switch to Object for all reads and writes

setKind() is a no-op if kind is already Long

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Local	Variables
@NodeField(name = "slot", type = FrameSlot.class)
public abstract class SLReadLocalVariableNode extends SLExpressionNode {

protected abstract FrameSlot getSlot();

@Specialization(guards = "isLong(frame)")
protected long readLong(VirtualFrame frame) {

return FrameUtil.getLongSafe(frame, getSlot());
}
protected boolean isLong(VirtualFrame frame) {

return getSlot().getKind() == FrameSlotKind.Long;
}
...

@Specialization(contains = {"readLong", "readBoolean"})
protected Object readObject(VirtualFrame frame) {

if (!frame.isObject(getSlot())) {
CompilerDirectives.transferToInterpreter();
Object result = frame.getValue(getSlot());
frame.setObject(getSlot(), result);
return result;

}

return FrameUtil.getObjectSafe(frame, getSlot());
}

Slow path: we can still have frames with
primitive values written before we switched the
local variable to the kind Object

194

The guard ensure the frame slot contains a
primitive long value

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	preceding	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	information	purposes	only,	and	may	not	be	incorporated	into	any	contract.		
It	is	not	a	commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	
relied	upon	in	making	purchasing	decisions.	Oracle	reserves	the	right	to	alter	its	
development	plans	and	practices	at	any	time,	and	the	development,	release,	and	timing	
of	any	features	or	functionality	described	in	connection	with	any	Oracle	product	or	
service	remains	at	the	sole	discretion	of	Oracle.		Any	views	expressed	in	this	presentation	
are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

