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Abstract
Programmers combine different programming languages be-
cause it allows them to use the most suitable language for a
given problem, to gradually migrate existing projects from
one language to another, or to reuse existing source code.
However, existing cross-language mechanisms suffer from
complex interfaces, insufficient flexibility, or poor perfor-
mance.

We present the TruffleVM, a multi-language runtime that
allows composing different language implementations in a
seamless way. It reduces the amount of required boiler-
plate code to a minimum by allowing programmers to ac-
cess foreign functions or objects by using the notation of
the host language. We compose language implementations
that translate source code to an intermediate representation
(IR), which is executed on top of a shared runtime system.
Language implementations use language-independent mes-
sages that the runtime resolves at their first execution by
transforming them to efficient foreign-language-specific op-
erations. The TruffleVM avoids conversion or marshaling of
foreign objects at the language boundary and allows the dy-
namic compiler to perform its optimizations across language
boundaries, which guarantees high performance. This paper
presents an implementation of our ideas based on the Truffle
system and its guest language implementations JavaScript,
Ruby, and C.
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1. Introduction
The likelihood that a program is entirely written in a single
language is lower than ever [8]. Composition of languages is
important for mainly three reasons: programmers can use the
most suitable language for a given problem, can gradually
migrate existing projects from one language to another, and
can reuse existing source code.

There exists no programming language that is best for all
kinds of problems [2, 8]. High-level languages allow repre-
senting a subset of algorithms efficiently but sacrifice low-
level features such as pointer arithmetic and raw memory
accesses. A typical example is business logic written in a
high-level language such as JavaScript that uses a database
driver written in a low-level language such as C. Cross-
language interoperability allows programmers to pick the
most suitable language for a given part of a problem. Ex-
isting approaches cater primarily to composing two specific
languages, rather than arbitrary languages. These pairwise
efforts restrict the flexibility of programmers because they
have to select languages based on given cross-language in-
terfaces.

Cross-language interoperability reduces the risks when
migrating software from one language to another. For ex-
ample, programmers can gradually port existing C code to
Ruby, rather than having to rewrite the whole project at
once. However, existing approaches (e.g. Ruby’s C exten-
sion mechanism) require the programmer to write wrapper
code to integrate foreign code in a project, which adds a



maintenance burden and also distracts the programmer from
the actual task at hand.

Finally, cross-language interoperability allows reusing
existing source code. Due to the large body of existing code
it is not feasible to rewrite existing libraries in a different lan-
guage. A more realistic approach is to use a cross-language
interoperability mechanism that allows reusing this existing
code. However, existing solutions convert data at the lan-
guage border [34], use generic data representations that can-
not be optimized for an individual language [35], or cannot
widen the compilation scope across languages [24], which
introduces a runtime overhead. Programmers have to sac-
rifice performance if components, written in different lan-
guages, are tightly coupled.

In this paper we present the TruffleVM, a multi-language
runtime that composes individual language implementations
that run on top of the same virtual machine, and share
the same style of IR. Multi-language applications can ac-
cess foreign objects and can call foreign functions by sim-
ply using the operators of the host language, which makes
writing multi-language applications easy. In our system, a
multi-language program just uses different files for different
programming languages. The TruffleVM makes language
boundaries mostly invisible because the runtime implicitly
bridges them. Hence, we can reduce the amount of required
boiler-plate code to a minimum. For example, the JavaScript
statement in Figure 1 can access the C structure obj as if
it were a regular JavaScript object. Only if semantics of
languages fundamentally differ, programmers should need
to revert to an API and therefore an explicit foreign object
access.

We are convinced that a well-designed cross-language
interoperability mechanism should not only target a fixed
set of languages but should be general enough to sup-
port interoperability between arbitrary languages. The Truf-
fleVM uses the dynamic access, which is an interoperability-
mechanism that allows combining arbitrary languages by
composing their implementations on top of the TruffleVM.
The dynamic access is independent of programming lan-
guages and their implementations for the TruffleVM. It is
possible to add new languages to the TruffleVM without
affecting the existing language implementations.

Also, crossing language boundaries does not introduce
runtime overhead. First, we do not require a common rep-
resentation of data for all languages (e.g., in contrast to the
CLR [6]), but each language can use the data structures that
meet the requirements of this individual language best. For
example, a C implementation can allocate raw memory on
the native heap while a JavaScript implementation can use
dynamic objects on a managed heap. Second, each language
can access foreign objects or invoke foreign functions with-
out introducing run-time overhead. The dynamic access en-
ables dynamic compilers to optimize a foreign object access
like any regular object access and also to widen the compi-

struct S {
  int value;
};
struct S * obj;

var a = obj.value; 
C Code:JavaScript Code:

Figure 1: JavaScript can access C data structures.

lation scope across language boundaries and thus to perform
cross-language optimizations. For example, we can inline a
JavaScript function into a caller that is written in C.

As a case study, we compose the languages JavaScript,
Ruby, and C. This allows us to discuss the following core
aspects:

1. The host language implementation maps language-specific
operations to messages, which are used to access ob-
jects in a language-independent way. For example, the
JavaScript implementation maps the property access of
Figure 1 to a message.

2. The foreign language maps these messages to foreign-
language specific accesses. The TruffleVM uses this
mapping to replace messages by efficient foreign-language-
specific operations at their first execution. For example,
the TruffleVM replaces the message to read the member
value by a structure access.

3. Finally, we discuss how we can bridge differences be-
tween JavaScript, Ruby, and C. These differences are:
object-oriented vs. non-object-oriented; dynamically typed
vs. statically typed; explicit memory management vs. au-
tomatic memory management; safe memory access vs.
unsafe memory access.

We present a performance evaluation using multi-language
benchmarks. We simulate using a new language in an exist-
ing code base, or updating a legacy code base gradually by
translating parts of well-established benchmarks from lan-
guage A to language B. We use the languages JavaScript,
Ruby, and C and can show that language boundaries do not
cause a performance overhead. In summary, this paper con-
tributes the following:

• We describe a multi-language runtime that composes dif-
ferent language implementations. Rather than composing
a pair of languages (e.g., in contrast to a foreign func-
tion interface (FFI)) we support interoperability between
arbitrary languages. We show how language implemen-
tations map language-dependent operations to language-
independent messages and vice versa.

• We list the different semantics of JavaScript, Ruby, and
C and explain how we bridge these differences.

• We show the simplicity and extensibility of the Truf-
fleVM. Also, we evaluate the performance of the Truf-
fleVM using non-trivial multi-language benchmarks.



2. System Overview
The TruffleVM targets language implementations, hosted
by a general-purpose VM. In the context of this paper, a
language implementation (LI) translates the source code into
an IR. We could identify the following requirements:

Compatible IR: LIs have to translate the applications’
source code to compatible (but not necessarily equal)
IRs.

Rewriting capability: LIs need a rewriting capability that
allows them to replace IR snippets with different IR snip-
pets at run time.

Sharable data: The data structures used by LIs to represent
the data of an application need to be accessible by all LIs.

Dynamic compilation: The dynamic compiler of the host
VM compiles the IR of a program to highly efficient
machine code at runtime.

These requirements exist for bytecode-based VMs (e.g. a
JVM): They use a common IR, which is bytecode. Tech-
niques such as bytecode quickening [7] provide the rewriting
capability and all languages share a common heap for their
data.

The same requirements also exist for Truffle [39], a plat-
form for implementing high-performance LIs in Java. We
use Truffle for our case study because there are many LIs
available; including JavaScript, Ruby, and C. Truffle LIs are
abstract syntax tree (AST) interpreters, running on top of a
Java Virtual Machine. Source code is compiled to an AST,
which is then dynamically executed by the Truffle frame-
work. Every node has a method that evaluates the node. By
calling these methods recursively, the whole AST is evalu-
ated. All nodes extend a common base class Node.

Truffle ASTs are self-optimizing in the sense that AST
nodes can speculatively rewrite themselves with specialized
variants [38] at run time, e.g., based on profile information
obtained during execution such as type information. If these
speculative assumptions turn out to be wrong, the special-
ized tree can be reverted to a more generic version that pro-
vides functionality for all possible cases. Truffle guest lan-
guages use self-optimization via tree rewriting as a general
mechanism for dynamically optimizing code at run-time.

After an AST has become stable (i.e., no more rewritings
occur) and when the execution frequency has exceeded a
predefined threshold, Truffle dynamically compiles the AST
to highly optimized machine code. The Truffle framework
uses the Graal compiler [27] (which is part of the Graal
VM) as its dynamic compiler. The compiler inlines node
execution methods of a hot AST into a single method and
performs aggressive optimizations over the whole tree. It
also inserts deoptimization points [20] in the machine code
where the speculative assumptions are checked. If they turn
out to be wrong, control is transferred back from compiled
code to the interpreted AST, where specialized nodes can be

OS

HotSpot Runtime
Interpreter GC …Graal

Truffle
Graal VM

TruffleJS TruffleRuby TruffleC Language
Implementations

*.js *.rb *.c Application

Compatible IR
(AST)

Source Code

Shared runtime

Figure 2: Layers of a Truffle-based system: TruffleJS, Truf-
fleRuby, and TruffleC are hosted by the Truffle framework
on top of the Graal VM.

reverted to a more generic version. The Graal VM [27] is
a minor modification of the HotSpot VM: it adds the Graal
compiler, but reuses all other parts (including the garbage
collector and the interpreter) from the HotSpot VM. Figure 2
shows the layers of a Truffle-based system.

In this paper we use three LIs on top of Truffle:

TruffleJS is a state-of-the-art JavaScript engine that is
fully compatible with the JavaScript standard. Truf-
fleJS’ speedup varies between 0.3× and 3× (average:
0.66×) compared to Google’s V8; between 0.4× and
1.3× (average: 0.65×) compared to Mozilla’s Spider-
monkey; between 0.9× and 27× (average: 5.8×) com-
pared to Nashorn as included in JDK 8u5 (results taken
from [36]).

TruffleRuby is a Ruby implementation, which is an ex-
perimental option of JRuby. TruffleRuby performs well
compared to existing Ruby implementations. Its speedup
varies between 2.7× and 38.2× (average: 12.7×) com-
pared to MRI; between 1.3× and 39.8× (average: 6.2×)
compared to Rubinius; between 2.7× and 17× (aver-
age: 6.6×) compared to JRuby; and between 1× and
7.6× (average: 3.5×) compared to Topaz (results taken
from [36]).

TruffleC is a C implementation on top of Truffle [14, 16]
and can dynamically execute C code. TruffleC’s speedup
varies between 0.6× and 1.1× (average: 0.81×) com-
pared to the best performance of the GNU C Compiler
(results taken from [16]). TruffleC does not yet support
the full C standard. However, there are no conceptual
limitations and future work will address completeness is-
sues.

Foreign Object Access: In the context of this paper, an ob-
ject is a non-primitive entity of a user program, which we
want to share across different LIs. Examples include data
(such as JavaScript objects, Ruby objects, or C pointers), as
well as functions, classes or code-blocks. If the Ruby imple-
mentation accesses a Ruby object, the object is considered
a regular object. If Ruby (host language, LIHost) accesses a
C structure, the C structure is considered a foreign object
(we call C the foreign language, LIForeign). Object accesses
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Figure 3: The dynamic access accesses a JavaScript object
using messages; Message resolution replaces the Read mes-
sage by a direct access.

are operations that an LIHost can perform on objects, e.g.,
method calls, property accesses, or field reads. We base our
work on the dynamic access, which is a message-based ap-
proach to access foreign objects [13, 17].

Truffle LIs use different layouts for objects. For exam-
ple, the JavaScript implementation allocates data on the Java
heap, whereas the C implementation allocates data on the
native heap. Hence, each LI uses language-specific nodes to
access regular objects. To access a foreign object, an LIHost
can use the dynamic access: The dynamic access defines a
set of language-independent messages, used to access for-
eign objects. The left part of Figure 3 shows a Truffle AST
snippet that reads the value property of a JavaScript object
obj using a Read message.

Message resolution: The LIHost uses a message to access a
foreign object, which has exactly one language it belongs to.
The TruffleVM uses this foreign language LIForeign to resolve
the message to a foreign-language-specific AST snippet
(message resolution) upon first execution. The LIForeign pro-
vides an AST snippet that can be inserted into the host AST
as a replacement for the messages. This snippet contains
foreign-language-specific operations that directly access
the receiver. Thus, message resolution replaces language-
independent messages by language-specific operations. In
order to notice an access to an object of a previously un-
seen foreign language message resolution inserts a guard
into the AST that checks the receiver’s language before it
is accessed. As can be seen in Figure 3, message resolution
inserts a JSReadProperty node (a JavaScript-specific AST
node that reads the property of a JavaScript object; in Fig-
ure 3 we use the abbreviated label "." for this node). Before
the AST accesses obj, it checks if obj is a JavaScript object
(is JS?). If obj is suddenly an object of a different language
the execution falls back to sending a Read message again,
which will then be resolved to a new AST snippet for this
language. An object access is language polymorphic if it has
varying receivers originating from different languages. In
the language polymorphic case, the TruffleVM embeds the
different language-specific AST snippets in a chain like an
inline cache [19] and therefore avoids a loss in performance.

Primitive types: Besides objects, also values with a prim-
itive type can be shared across languages. The work of [17]
defines a set of shared primitive types. Truffle languages
map language-specific primitive types from and to this set,
which allows exchanging primitive values.

In [17], we describe how this approach is used to com-
pose the C and Ruby implementations in order to support
C extensions for Ruby. The runtime that we present in this
paper composes arbitrary languages rather than a pair of lan-
guages (Ruby and C). Section 6 discusses in detail how our
approach differs from traditional FFIs on top of Truffle.

3. Multi-Language Composition
The TruffleVM can execute programs that are written in
multiple languages. Programmers use different files for dif-
ferent programming languages. For example, if parts of a
program are written in JavaScript and C, these parts are in
different files. Distinct files for each programming language
allow us to reuse the existing parsers of each LI without
modification. Syntactical and grammatical combination is
out of scope for this work.

Programmers can export data and functions to a multi-
language scope and also import data and functions from
this scope. This allows programmers to explicitly share data
among other languages. JavaScript, Ruby, and C provide
built-ins that allow exporting and importing data to and from
the multi-language scope.

3.1 Implicit Foreign Object Accesses
The TruffleVM allows programmers to access foreign ob-
jects transparently. The VM maps host-language-specific
operations to language-independent messages, which are
then mapped back to foreign-language-specific operations.
Truffle LIs compile source code to a tree of nodes, i.e., an
AST. NA and NB define finite sets of nodes of LIs A and
B. Each node has r : NA → N children, where N denotes
the set of natural numbers. If n ∈ NA is a node, then r(n)
is the number of its children. We call nodes with r = 0 leaf
nodes. An AST t ∈ TNA is a tree of nodes n ∈ NA. By
n(t1, ..., tk) we denote a tree with root node n ∈ NA and k
sub-trees t1, . . . , tk ∈ TNA , where k = r(n).

The dynamic access defines a set of messages, which are
modeled as language-independent nodes NMsg:

NMsg = {Read,Write,Execute,Unbox, IsNull} (1)

If the LIHost A uses messages to access a foreign object, the
tree ta,m ∈ TNA∪NMsg consists of language-specific nodes
NA and language-independent nodes NMsg.

To compose JavaScript, Ruby, and C we use the messages
n ∈ NMsg where the sub-trees t1, . . . , tk ∈ TNA∪NMsg of
n(t1, ..., tk) evaluate to the arguments of the message:

Read: Truffle LIs use the Read message to access a field of
an object or an element of an array. It can also be used



to access methods of classes or objects, i.e., to lookup
executable methods from classes and objects.

Read(trec, tid) ∈ TNA∪NMsg (2)

The first subtree trec evaluates to the receiver of the Read
message, the second subtree tid to a name or an index.

Write: An LI uses the Write message to set the field of an
object or the element of an array. It can also be used to
add or change the methods of classes and objects.

Write(trec, tid, tval) ∈ TNA∪NMsg (3)

The first subtree trec evaluates to the receiver of the Write
message, the second subtree tid to a name or an index,
and the third subtree tval to a value.

Execute: LIs execute methods or functions using an Exe-
cute message.

Execute(tf, t1, . . . , ti) ∈ TNA∪NMsg (4)

The first subtree tf evaluates to the function/method itself,
the other arguments t1, . . . , ti to arguments.

Unbox: Programmers often use an object type to wrap a
value of a primitive type in order to make it look like a
real object. An Unbox message unwraps such a wrapper
object and produces a primitive value. LIs use this mes-
sage to unbox a boxed value whenever a primitive value
is required.

Unbox(trec) ∈ TNA∪NMsg (5)

The subtree trec evaluates to the receiver object.

IsNull: Many programming languages use null/nil for
an undefined, uninitialized, empty, or meaningless value.
The IsNull message allows the LI to do a language-
independent null-check.

IsNull(trec) ∈ TNA∪NMsg (6)

The subtree trec evaluates to the receiver object.

3.1.1 Mapping language-specific operations to
messages

If language A encounters a foreign object at runtime and
the regular object access operations cannot be used, then
language A uses the dynamic access. The LIA maps an AST
with a language-specific object access ta ∈ TNA to an AST
with a language-independent access ta,m ∈ TNA∪NMsg using
a the function fA:

TNA
fA−−→ TNA∪NMsg (7)

The function fA replaces the language specific access and
inserts a language independent access instead. The other

parts of the AST ta remain unchanged. An LIHost that ac-
cesses foreign objects has to define this function fA.

Consider the example in Figure 4 (showing a property ac-
cess in JavaScript: obj.value), fJS replaces the JavaScript-
specific object access (JSReadProperty, node "." in the
AST) with a language-independent Read message (see left
part of Figure 4).

JSReadProperty(tobj, tvalue)
fJS7−→ Read(tobj, tvalue) (8)

Rather than using a JSReadProperty node to access the
value property of the receiver obj, the JavaScript imple-
mentation uses a Read message.

3.1.2 Mapping messages to language-specific
operations

The TruffleVM uses the LIForeign B to map the host AST with
a language-independent access ta,m ∈ TNA∪NMsg to an AST
with a foreign language-specific access ta,b ∈ TNA∪NB

using the function gB :

TNA∪NMsg
gB−−→ TNA∪NB (9)

Message resolution removes the language-independent ac-
cess and inserts a language specific access instead, which
produces an AST that consists of nodes NA∪NB . The other
parts of ta,m remain unchanged. With respect to the example
in Figure 4, the TruffleVM replaces the Read message with
a C-specific access operation upon its first execution. More
specifically, it uses gC to replace the Read message with a
CMemberRead node (node "->" in the AST):

Read(tobj, tvalue)
gC7−−→ CMemberRead(tobj, tvalue) (10)

The result is a JavaScript AST that embeds a C access
operation tJS,C ∈ TN JS∪NC .

Language implementers have to define the functions fA
and gB ; the TruffleVM then creates the pairwise combina-
tion automatically by composing these functions at runtime:

gB ◦ fA : TNA → TNA∪NB (11)

When accessing foreign objects, the TruffleVM automati-
cally creates an AST ta,b ∈ TNA∪NB where the main part is
specific to language A and the foreign object access is spe-
cific to language B.

For further reference, we provide a detailed table that lists
all mappings from language-specific operations to messages
and vice versa1.

3.1.3 Limitation
Consider a function fA that maps an AST with a language-
specific object access ta ∈ TNA to an AST with a language-
independent access ta,m ∈ TNA∪NMsg and a function gB that

1 http://ssw.jku.at/General/Staff/Grimmer/TruffleVM_table.pdf

http://ssw.jku.at/General/Staff/Grimmer/TruffleVM_table.pdf
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Figure 4: Accessing a C structure form JavaScript; Message resolution inserts a C struct access into a JavaScript AST.

maps ta,m to an AST with a foreign-language-specific object
access ta,b ∈ TNA∪NB :

TNA
fA−−→ TNA∪NMsg

TNA∪NMsg
gB−−→ TNA∪NB

(12)

When composing fA and gB three different cases can
occur:

1. If gB is defined for ta,m ∈ TNA∪NMsg a foreign object
can be accessed implicitly. The TruffleVM can replace
the language-independent object access with a B-specific
access.

2. If gB is not defined for ta,m ∈ TNA∪NMsg , we report
a runtime error with a high-level diagnostic message.
The foreign object access is not supported by the foreign
language. For example, if JavaScript accesses the length
property of a C array, we report an error. C cannot provide
length information for arrays.

3. A foreign object access might not be expressible in A,
i.e., one wants to create ta,m ∈ TNA∪NMsg but language
A does not provide syntax for this access. For example,
a C programmer cannot access the length property of a
JavaScript array. In this case one has to fall back to an
explicit foreign object access.

3.2 Explicit Foreign Object Accesses
A host language might not provide syntax for a specific
foreign object access. Consider the JavaScript array arr of
Figure 5, which is used in a C program: C does not provide
syntax for accessing the length property of an array.

We overcome these issues by exposing the dynamic ac-
cess to the programmer. Using this interface, the program-
mer can fall back to an explicit foreign object access. The
programmer sends a message directly in order to access a
foreign object. In other words, this interface allows pro-
grammers to handcraft the foreign object access of ta,m ∈
TNA∪NMsg .

Every LI on top of Truffle has an API for explicit message
sending. For example, to access the length property of
a JavaScript array from C (see Figure 5), the programmer

var arr = new Array(5);int arr = // …
int length = Read(arr, “length”);

JavaScript Code:C Code:

Figure 5: C accessing the length property of a JavaScript
array.

uses the built-in C function Read. The C implementation
substitutes this Read invocation by a Read message.

4. Different Language Paradigms and
Features

In this section we describe how we map the different
paradigms and features of the languages JavaScript, Ruby,
and C to messages. It is not possible to cover all features and
paradigms of the vast amount of languages that are avail-
able. Hence, we focus on JavaScript, Ruby, and C and show
how we map the concepts of these fundamentally differ-
ent languages to the dynamic access, which demonstrates
the feasibility of the TruffleVM. We explain how we deal
with dynamic typing versus static typing, object-oriented
versus non-object oriented semantics, explicit versus auto-
matic memory management, as well as safe versus unsafe
memory accesses.

4.1 Dynamic Typing vs. Static Typing
In [37], Wrigstad et al. describe an approach called like types
— they show how dynamic objects can be used in a stati-
cally typed language by binding them to like-type variables.
Occurrences of like-type variables are checked statically, but
their usage is checked dynamically. The TruffleVM is simi-
lar, except that in our case any pointer variable in C can be
bound to a foreign object:

We bind foreign dynamic objects to pointer variables that
are associated with static type information. If a pointer is
bound to a dynamically typed value, we check the usage
dynamically, i.e., upon each access we check whether the
operation on the foreign object is possible. We report a run-
time error otherwise.



Figure 6 shows a C program, which uses a JavaScript
object jsObject. The C code associates jsObject with
the static type struct JsObject*, which is defined by the
programmer (Figure 6, Label 1). When the C code accesses
the JavaScript object (Label 3), we check whether bar exists
and report an error otherwise.

4.2 Object-Oriented vs. Non-Object Oriented
Semantics

The object-oriented programming paradigm allows pro-
grammers to create objects that contain both data and code,
known as fields and methods. Also, objects can extend each
other (e.g. class-based inheritance or prototype-based inher-
itance) — when accessing fields or methods, the object does
a lookup and provides a field value or a method.

The TruffleVM uses the dynamic access, which retains
this mechanism. Consider the method invocation (from C to
JavaScript) at Label 3 in Figure 6: TruffleC maps this access
to the following messages:

CCall(CMemberRead(tjsObject, tbar), tjsObject, t84)

fC7−−→ Execute(Read(tjsObject, tbar), tjsObject, t84)
(13)

TruffleJS resolves this access to an AST snippet that does
the lookup of method bar and executes it:

Execute(Read(tjsObject, tbar), tjsObject, t84)
gJS7−−→ JSCall(JSReadProperty(tjsObject, tbar), tjsObject, t84)

(14)
A method call in an object-oriented language passes the
this object as an implicit argument. Non-object oriented lan-
guages that invoke methods therefore need to explicitly pass
the this object. For example, the JavaScript function bar (see
Figure 6) expects the this object as the first argument. Hence,
the first argument of the method call in C (Label 3) is the this
object jsObject.

Vice versa, the signature of a non-object-oriented func-
tion needs to contain the this argument if the caller is an
object-oriented language. For example, if JavaScript calls
the C function foo (Label 4), JavaScript passes the this ob-
ject as the first argument. The signature of the C function
foo (Label 5) explicitly contains the this object. A wrong
number of arguments causes a runtime error.

Future work: The TruffleVM currently does not support
cross-language inheritance, i.e., class-based inheritance or
prototype-based inheritance is only possible with objects
that originate from the same language. We are convinced
that the TruffleVM is extensible in this respect and therefore
our future research will focus on inheritance across language
boundaries.

4.3 Explicit vs. Automatic Memory Management
Truffle LIs are running on a shared runtime and can ex-
change data, independent of whether it is managed or un-
managed:

Unmanaged allocations: Truffle LIs keep unmanaged al-
locations on the native heap, which is not garbage collected.
For example, TruffleC allocates data on the native heap.
TruffleC represents all pointers (pointers to values, arrays,
structures, and functions) as managed Java objects of type
CAddress that wrap a 64-bit address value [15] and attach
type information to the address value. TruffleC uses this type
information to resolve messages and provide AST snippets
that can access the data, stored on the native heap. When ac-
cessing a CAddress object via a dynamic access, the access
will resolve to a raw memory accesses. The dynamic access
allows accessing unmanaged data from a language that oth-
erwise only uses managed data.

Managed allocations: The JavaScript and Ruby imple-
mentations allocate objects on the Java heap. If an applica-
tion binds a managed object to a C variable, then TruffleC
keeps this variable as a Java object of type Object. Thus,
the Java garbage collector can trace managed objects even if
they are referenced from unmanaged languages.

Trade-offs: If a pointer variable of an unmanaged lan-
guage references an object of a managed language, opera-
tions are restricted. First, pointer arithmetic on foreign ob-
jects is only allowed as an alternative to array indexing. For
example, C programmers can access a JavaScript array either
with indexing (e.g. jsArray[1]) or by pointer arithmetic
(*(jsArray + 1)). However, it is not allowed to manipu-
late a pointer variable, referencing a managed object in any
other way (e.g. jsArray = jsArray + 1).

Second, pointer variables referencing managed objects
cannot be cast to primitive values (such as long or int).
References to the Java heap cannot be represented as primi-
tive values like it is possible for raw memory addresses. We
report a high-level error-message in that case.

4.4 Safe vs. Unsafe Memory Accesses
C is an unsafe language and does not check memory ac-
cesses at runtime, i.e., there are no runtime checks that en-
sure that pointers are only dereferenced if they point to a
valid memory region and that pointers are not used after the
referenced object has been deallocated. TruffleC allocates
data on the native heap and uses raw memory operations to
access it, which is unsafe. This has the following implica-
tions on multi-language applications:

Unsafe accesses: If an unsafe language (such as C) shares
data with a safe language (such as JavaScript), all access
operations are unsafe. For example, accessing a C array in
JavaScript is unsafe. If the index is out of bounds, the access
has an undefined behavior (as defined by the C specifica-
tion). However, accessing a C array directly is more efficient
than accessing dynamic JavaScript array because less run-
time checks are required.

Safe accesses: Accessing data structures of a safe lan-
guage (such as JavaScript) from an unsafe language (such



struct JsObject {
  void (*bar)(void *receiver, int b);
};
struct JsObject *jsObject = // …

jsObject->bar(jsObject, 84);

void foo(void *receiver, int a);

var jsObject = {
  bar: function (b) {  
  // …
  }
}
// …

foo(42);

2

3

1

5 4

Figure 6: Foreign object definition in C and an object-oriented object access.

as C) is safe. For example, accessing a JavaScript array in
C is safe. TruffleC implements the access by a Read or
Write message, which TruffleJS resolves with operations
that check if the index is within the array bounds and grow
the array in case the access was out of bounds.

5. Evaluation
In this section we discuss why we claim that the TruffleVM
improves the current state-of-the-art in cross-language in-
teroperability. We focus on simplicity of foreign object ac-
cesses, as well as on extensibility of the TruffleVM with re-
spect to new languages. We also evaluate the performance
of a multi-language application.

5.1 Simplicity
Accessing foreign objects with the operators of the host lan-
guage improves simplicity. Programmers are not forced to
write boiler-plate code as long as an object access can be
mapped from language A to language B (ta

fA7−−→ ta,m
gB7−−→

ta,b). We make the mapping of language operations to mes-
sages largely the task of language implementers rather than
the task of application programmers.

If not otherwise possible, programmers can also handcraft
accesses to foreign objects. All languages expose an API
that allows programmers to explicitly access foreign objects
using the dynamic access.

We modified single-language benchmarks such that parts
of them were written in a different language. The other parts
did not have to be changed, because accesses to foreign-
language objects can simply be written in the language of the
host. The only extra code that we needed was for importing
and exporting objects form and to the multi-language scope.

5.2 Extensibility
Many existing cross-language mechanisms cannot be ex-
tended to other languages. For example, FFIs are designed
for a set of two languages and it is hard to extend them to
include other languages. We can add new languages to the
TruffleVM if they support the following:

Language-independent access: The LIHost has to map an
AST with language-specific accesses to an AST with
language-independent accesses, i.e., an LIHost has to de-
fine TNA

fA−−→ TNA∪NMsg . If the semantics of a new

language do not allow the mapping of certain operations
to messages, language implementers can still provide an
API to support an explicit foreign object access (see Sec-
tion 3.2), which limits the implicit foreign object access
but still guarantees good performance.

Resolve a language-independent access: An LIForeign
has to define a mapping from an AST with language-
independent accesses to an AST with foreign language-
specific accesses TNA∪NMsg

gB−−→ TNA∪NB . This map-
ping allows the language implementer to decide how
other languages can access objects.

Multi-language scope: The LI has to provide infrastruc-
ture for the application programmer to export and import
objects to and from the multi-language scope.

Implementing these requirements for an existing Truffle lan-
guage is little effort: A single programmer was able to imple-
ment the dynamic access for TruffleRuby within one week
and we could add it to the TruffleVM.

5.3 High Performance
We evaluated the TruffleVM with a number of benchmarks
that show how multi-language applications perform com-
pared to single-language applications.

Benchmarks: For this evaluation we use benchmarks that
heavily access objects and arrays. The benchmarks (the Sci-
Mark benchmarks2 and benchmarks from the Computer
Language Benchmarks Game3) compute a Fast Fourier
Transformation (FFT), a Jacobi successive over-relaxation
(SOR), a Monte Carlo integration (MC), a sparse matrix mul-
tiplication (SM), a dense LU matrix factorization (LU), sort
an array using a tree data structure (TS), generate and write
random DNA sequences (Fasta), and solve the towers of
Hanoi problem (Tower).

Experimental Setup: The benchmarks were executed on
an Intel Core i7-4770 quad-core 3.4GHz CPU running 64
Bit Debian 7 (Linux3.2.0-4-amd64) with 16 GB of memory.
We base the TruffleVM on Graal revision bf586af6fa0c

from the official OpenJDK Graal repository4. In this evalua-
tion we show the score for each benchmark and its configu-

2 http://math.nist.gov/scimark2/index.html
3 http://benchmarksgame.alioth.debian.org/
4 http://openjdk.java.net/projects/graal/

http://math.nist.gov/scimark2/index.html
http://benchmarksgame.alioth.debian.org/
http://openjdk.java.net/projects/graal/


ration, which is the proportion of the execution count of the
benchmark and the time needed (executions/second).

For this evaluation we are interested in peak performance
of long running applications. Hence, we executed every
benchmark 10 times with the same parameters after an ini-
tial warm-up of 50 iterations to arrive at a stable peak per-
formance and calculated the averages for each configuration
using the arithmetic mean.

Using foreign objects has no influence on compile time.
We compile ASTs where messages are already resolved, i.e.,
for the compiler there is no difference between a foreign or
a regular object access. Also, message resolution happens
at the first execution and happens only once. Compared to
the single-language implementations, the warm-up time did
not change. A general evaluation of warm-up performance
of Truffle LIs is out of scope for this work.

The error bars in the charts of this section show the
standard deviation. The x-axis of the charts in Figure 7, 8,
and 9 shows the different benchmarks. The y-axis of the
charts in Figure 7, 8, and 9 shows the average scores (higher
is better) of the benchmarks. Where we summarize across
different benchmarks we report a geometric mean [10].

5.3.1 Results of single-language benchmarks
We compare the performance of the individual languages on
our benchmarks. The results in Figure 7 are normalized to
the C performance. This evaluation shows that JavaScript
code is on average 37% slower and Ruby code on average
66% slower than C code. We explain the differences as
follows:

C data accesses do not require runtime checks (such as
array bounds checks), but the memory is accessed directly.
This efficient data access makes C the fastest language for
most benchmarks.

However, if a program allocates data in a frequently exe-
cuted part of the program, the managed languages (JavaScript
and Ruby) can outperform C. Allocations in TruffleC (using
calloc) are more expensive than the instantiation of a new
object on the Java heap. TruffleC does a native call to exe-
cute the calloc function of the underlying OS. TruffleJS or
TruffleRuby allocate a new object on the Java heap using se-
quential allocation in thread-local allocation buffers, which
explains why JavaScript and Ruby perform better than C on
Treesort. The Ruby semantics require that Ruby objects are
accessed via getter or setter methods. TruffleRuby uses a
dispatch mechanism to access these methods. This dispatch
mechanism introduces additional runtime checks, which ex-
plains why Ruby is in general slower than JavaScript or C.

5.3.2 Results of multi-language benchmarks
We modified the benchmarks by extracting all array and
object allocations into factory functions. We then replaced
these factory functions with implementations in different
languages, making the benchmarks multi-language applica-
tions.

Com
p.

FFT
SOR

M
C SM LU TS

Fast
a

Tow
er

0

1

2

1 1 1 1 1 1 1 1 1

0
.6

3

0
.8

1

0
.5

7 1

0
.2

7

0
.4

4

1
.6

2

0
.4

6

0
.6

4

0
.3

3

0
.3

8

0
.2

1 0
.5

8

0
.1 0
.2

1

1
.1

4

0
.5

5

0
.2

3

C (baseline) JS Ruby

Figure 7: Performance of individual languages on our bench-
marks (normalized to C performance; higher is better).

Com
p.

FFT
SOR

M
C SM LU TS

Fast
a

Tow
er

0

1

2

1 1 1 1 1 1 1 1 1

0
.6 0

.8
7

0
.4

5 0
.9

5

0
.2

6

0
.4

1

1
.4

8

0
.5 0
.5

8

0
.4

0
.4

2

0
.2

3 0
.7

8

0
.1

4

0
.2

1

1
.1

9

0
.5

3

0
.4

3

C (baseline) C w. JS C w. Ruby

(a) Main part in C.

Com
p.

FFT
SOR

M
C SM LU TS

Fast
a

Tow
er

0

1

2

3

1
.2

9

1
.1

5 1
.6

1

0
.9

2

1
.7

6

2
.1

1

0
.6

8

1
.4

1

1
.2

7

1 1 1 1 1 1 1 1 1

0
.5

5

0
.4

9

0
.4

4

0
.7

7

0
.5

6

0
.5 0
.6

7

0
.7

9

0
.3

2

JS w. C JS (baseline) JS w. Ruby

(b) Main part in JavaScript.
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Figure 8: Performance of multi-language applications
(higher is better).

We grouped our evaluations (Figure 8) such that their
main part was either written in C, in JavaScript, or in Ruby.
For each group we used the single-language implementation
as the baseline. We then replaced the factory functions by
implementations in a different language and compared the
multi-language configurations to the baseline of each group.



These multi-language applications heavily access foreign
arrays/objects and call foreign functions, which makes them
good candidates for our evaluation.

C Objects: C data structures are unsafe; access operations
are not checked at runtime, which makes them efficient
in terms of performance. Hence, using C data structures
in JavaScript or Ruby applications improves the run-
time performance. However, an allocation with calloc

is more expensive than an allocation on the Java heap.
The Treesort benchmark allocates objects in its main
loop, hence, factory functions in JavaScript or Ruby per-
form better than factory functions written in C.

JS Objects: TruffleJS uses a dynamic object implementa-
tion where each access involves run-time checks. Exam-
ples of such checks are array bounds checks to dynam-
ically grow JavaScript arrays or property access checks
to dynamically add properties to an object. These checks
are the reason why JavaScript objects perform worse than
C objects.

Ruby Objects: TruffleRuby’s dispatch mechanism for ac-
cessing objects introduces a performance overhead com-
pared to JavaScript and C, which explains why Ruby ob-
jects are in general slower than JavaScript objects or C
objects.

Our evaluation shows that the performance of a multi-
language program depends on the performance of the indi-
vidual language parts. Using heavy-weight foreign data has a
negative impact on performance: Figure 8a and 8b show that
using heavy-weight Ruby objects in C or JavaScript causes a
slowdown of up to 7×. On average, using Ruby data reduces
the C performance by a factor of 2.5 and the JavaScript
performance by a factor of 1.8. On the other hand, using
efficient foreign data has a positive effect on performance:
For example, Figure 8b and 8c show that using efficient C
data in JavaScript or Ruby can improve performance by up
to a factor of 4.22. On average, using C data improves the
JavaScript performance by a factor of 1.29 and the Ruby
performance by a factor of 1.85.

5.3.3 Removing language boundaries
Message resolution as part of the dynamic access allows
Truffle’s dynamic compiler to apply its optimizations across
language boundaries (cross-language inlining). Message
resolution removes language boundaries by merging differ-
ent language-specific AST parts, which allows the compiler
to inline method calls even if the callee is a foreign function.
Widening the compilation span across different languages
enables the compiler to apply optimizations to a wider range
of code.

Message resolution also allows Truffle’s dynamic com-
piler to apply escape analysis and scalar replacement [31]
to foreign objects. Consider a JavaScript program that allo-
cates an object, which is used by the C part of an applica-
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Figure 9: Performance evaluation of multi-language applica-
tions without message resolution (higher is better).

tion. Message resolution ensures that Truffle’s escape anal-
ysis can analyze the object access, independent of the host
language. If the JavaScript object does not escape the com-
pilation scope, scalar replacement can remove the allocation
and replace all usages of the object with scalar values.

To demonstrate the performance improvement due to
message resolution we temporarily disable it. When dis-
abling message resolution, the LIHost still uses the dynamic
access to access foreign objects but the TruffleVM does not
replace the messages in ta,m ∈ TNA∪NMsg . It uses LIForeign
to locally execute the access operation and return the result.
We do not introduce additional complexity to the dynamic
access. However, LIHost has to treat LIForeign as a black box,
which introduces a language boundary. In Figure 9 we show
the performance of our JavaScript benchmarks using C data
structures with and without message resolution. When dis-
abling message resolution, every data access as well as every
function call crosses the language boundary, which results
in a performance that is for JavaScript and C on average 6×
slower than the performance with message resolution. The
dynamic compiler cannot perform optimizations across lan-
guage boundaries, which explains the loss in performance.
We expect similar results for the other configurations, how-
ever, we have not measured them yet because disabling mes-
sage resolution for an LI requires a significant engineering
effort.

6. Foreign Function Interfaces with Truffle
We consider the TruffleVM to be very different from FFIs.
Usually, an FFI composes a fixed pair of languages, while
the TruffleVM allows interoperability between arbitrary lan-
guages as long as they comply with the requirements de-
scribed in Section 2.

Of course, the dynamic access can also be used for im-
plementing FFIs, which we discussed in previous work:

C data access for JavaScript [15]: In this work we ac-
cessed C data from within JavaScript, which is simi-
lar to using Typed Arrays in JavaScript. The perfor-
mance evaluation shows that using C arrays from within
JavaScript is on average 19% faster than using Typed



Arrays [15]. Performance improves because a C data
access is more efficient than accessing a Typed Array.

C extension support for Ruby [17]: C extensions allow
Ruby programmers to write parts of their application in
C. The Ruby engine MRI exposes a C extension API
that consists of functions to access Ruby objects from C.
In [17] we composed Ruby and C by implementing this
API in TruffleC. TruffleC substitutes every call to this
API with the dynamic access that accesses Ruby data.
We ran existing Ruby modules that used a C extension
for the computationally intense parts of the algorithm,
i.e., Ruby code calls C functions frequently, which in
turn heavily access Ruby data. The performance is on
average over 3× faster than the MRI implementation of
Ruby running native C extensions.

7. Related Work
7.1 Common Language Runtime
The Microsoft Common Language Infrastructure (CLI) de-
scribes LIs that compile different languages to a com-
mon IR that is executed by the Common Language Run-
time (CLR) [6]. The CLR can execute conventional object-
oriented imperative languages and the functional language
F#. Languages running under the CLR are restricted to a
subset of features that can be mapped to the Common Lan-
guage Specification (CLS) of the shared object model, i.e.,
a language that conforms to this CLS can exchange objects
with other conforming languages. CLS-compliant LIs gen-
erate metadata to describe user-defined types. This metadata
contains enough information to enable cross-language oper-
ations and foreign object accesses.

The CLS cannot directly call low-level languages such as
C. Native calls are done via the annotation-based PInvoke
and the FFI-like IJW interface, which uses explicit marshal-
ing and a pinning API.

Microsoft’s approach is different from ours because it
forces CLS-compliant languages to use a predefined repre-
sentation of data on the heap and to use a shared set of op-
erations to access it. The TruffleVM, on the other hand, al-
lows every language to have its own representation of objects
and to define individual access operations. Object accesses
are done via the dynamic access, i.e., they are mapped to
language-independent messages which are dynamically re-
solved for different languages at runtime. We embed foreign-
language-specific accesses into the host IR, which creates
a homogeneous IR that the dynamic compiler can optimize
even across language boundaries.

We argue that the TruffleVM is more flexible because co-
operating languages are not limited to languages that com-
ply with a predefined object model and a fixed set of ac-
cess operations. The TruffleVM allows the efficient compo-
sition of managed and unmanaged languages on top of a sin-
gle runtime and the exchange of data as diverse as dynamic
JavaScript objects and unmanaged C structures.

7.2 Foreign Function Interfaces
Most modern VMs expose an FFI such as Java’s JNI [24],
Java’s Native Access, or Java’s Compiled Native Interface.
An FFI defines a specific interface between two languages:
a pair of languages can be composed by using an API that
allows accessing foreign objects. The result is rather inflex-
ible, i.e., the host language can only interact with a foreign
language by writing code that is specific to this pair of lan-
guages. Also, FFIs primarily allow integrating C/C++ code,
e.g., Ruby and C (native Ruby extension), R and C (native
R extensions), or Java and C. They hardly allow integrating
code written in a different language than C.

Wrapper generation tools (e.g. the tool Swig [4] or the
tool described by Reppy and Song [28]) use annotations
to generate FFI code from C/C++ interfaces, rather than
requiring users to write FFI code by hand. However, these
tools add a maintenance burden: programmers need to copy
API definitions and apply annotations outside the original
source code. A similar approach is described in [23], where
existing interfaces are transcribed into a new notion instead
of using annotations.

Compilation barriers at language boundaries have a neg-
ative impact on performance. To widen the compilation span
across multiple languages, Stepanian et al. [32] describe an
approach that allows inlining native functions into a Java ap-
plication using a JIT compiler. They can show how inlining
substantially reduces the overhead of JNI calls.

Kell et al. [22] describe invisible VMs, which allow a
simple and low-overhead foreign function interfacing and
the direct use of native tools. They implement the Python
language and minimize the FFI overhead.

There are many other approaches that target a fixed pair
of languages [5, 12, 21, 29, 37]. These approaches are tai-
lored towards interoperability between two specific lan-
guages and cannot be generalized for arbitrary languages
and VMs. In contrast to them, the TruffleVM provides true
cross-language interoperability rather than just pairwise in-
teroperability: we can compose languages without writing
boilerplate code, without targeting a fixed set of languages,
and without introducing a compilation barrier when crossing
language boundaries. The TruffleVM requires LIs to imple-
ment the dynamic access in order to become interoperable
with other languages. Hence, the TruffleVM can be easily
extended with new languages.

7.3 Multi-Language Source Code
Another approach to cross-language interoperability is to
compose languages at a very fine granularity by allowing
the programmer to toggle between syntax and semantics of
languages on the source code level [2, 3, 18]. Jeannie [18] al-
lows toggling between C and Java, hence, the two languages
can be combined more directly than via an FFI. A similar ap-
proach is used by Barrett et al., in which the authors describe
a combination of Python and Prolog called Unipycation [2]



or Python and PHP called PyHyp [3]. Unipycation and Py-
Hyp compose languages by directly combining their inter-
preters. We share the same goals with Barrett et al., namely
to retain the performance of different language parts when
composing them, however, the TruffleVM is not restricted to
a fixed set of languages.

Jeannie, Unipycation, and PyHyp allow a more fine-
grained language composition than the TruffleVM. How-
ever, the code, written by programmers, consists of multiple
languages, which requires adaption of source-level tools (in-
cluding debuggers).

7.4 Interface Definition Languages
Interface Description Languages (IDLs) implement cross-
language interoperability via message-based inter-process
communication between separate runtimes. An IDL allows
the definition of interfaces that can be mapped to multi-
ple languages. An IDL interface is translated to stubs in
the host language and in the foreign language, which can
then be used for cross-language communication [26, 30, 34].
These per-language stubs marshal data to and from a com-
mon wire representation. However, this approach introduces
a marshalling and copying overhead as well as an addi-
tional maintenance burden (learning and using an IDL and
its toolchain).

Using IDLs in the context of single-process applications
has only been explored in limited ways [9, 35]. Also, these
approaches retain the marshalling overhead and cannot share
objects directly. The TruffleVM avoids copying of objects at
language borders and rather uses the dynamic access. Mes-
sage resolution makes language boundaries transparent to
the dynamic compiler, which can optimize across language
boundaries. Furthermore, by allowing the programmer to
implicitly access foreign objects we make the mapping of
language operations to messages largely the task of language
implementers rather than the task of end programmers.

7.5 Multi-Language Semantics
The semantics of multi-language composability is a well re-
searched area [1, 11, 12, 25, 33, 37], however, most of these
approaches do not have an efficient implementation. Our
work uses some inspiring ideas from existing approaches
(such as like types from Wrigstad et al.[37], Section 4.1) and
therefore stands to complement such efforts.

8. Conclusion
In this paper we presented a novel approach for compos-
ing language implementations, hosted by a shared runtime.
The TruffleVM allows programmers to directly access for-
eign objects using the operators of the host language. Lan-
guage implementations access foreign objects via the dy-
namic access, which means that language implementations
use language-independent messages that are resolved at their
first execution and transformed to efficient language-specific

operations. We define a mapping from language-specific ob-
ject accesses to language-independent messages and vice
versa. This approach makes the mapping of language op-
erations to messages largely the task of the language im-
plementer rather than the task of the end programmer. The
dynamic access allows us adding new languages to our plat-
form without affecting existing languages.

The TruffleVM leads to excellent performance of multi-
language applications because of two reasons: First, mes-
sage resolution replaces language-independent messages
with efficient language-specific operations. Accessing for-
eign objects becomes as efficient as accessing objects of the
host language. Second, the dynamic compiler can perform
optimizations across language borders because these borders
were removed by message resolution.

The work presented in this paper improves the simplicity,
the flexibility, and the performance of multi-language appli-
cations. It is the basis for a wide variety of different areas of
future research on which we will focus. Topics are, for ex-
ample, multi-language concurrency and parallelism, cross-
language inheritance, or cross-language debuggers.
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Analysis and Scalar Replacement for Java. In Proceedings of
CGO, 2014. . URL http://doi.acm.org/10.1145/2544137.

2544157.

[32] L. Stepanian, A. D. Brown, A. Kielstra, G. Koblents, and
K. Stoodley. Inlining Java Native Calls at Runtime. In
Proceedings of VEE, 2005. URL http://doi.acm.org/10.

1145/1064979.1064997.

[33] V. Trifonov and Z. Shao. Safe and principled language inter-
operation. 1999.

[34] N. Wang, D. C. Schmidt, and C. O’Ryan. Overview of the
CORBA Component Model. In Component-Based Software
Engineering, 2001.

[35] M. Wegiel and C. Krintz. Cross-language, Type-safe, and
Transparent Object Sharing for Co-located Managed Run-
times. In Proceedings of OOPSLA, 2010. URL http://doi.

acm.org/10.1145/1869459.1869479.
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