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Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It 
is intended for information purposes only, and may not be incorporated into any 
contract. It is not a commitment to deliver any material, code, or functionality, and 
should not be relied upon in making purchasing decisions. Oracle reserves the right to 
alter its development plans and practices at any time, and the development, release, and 
timing of any features or functionality described in connection with any Oracle product or 
service remains at the sole discretion of Oracle. Any views expressed in this presentation 
are my own and do not necessarily reflect the views of Oracle.
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• What, in concrete terms, is GraalVM?
• What can I practically do with it?
• What do all these things have to do with each other?
• What is the big idea?
• What kind of change is this going to enable?
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• What, in concrete terms, is GraalVM?
• What can I practically do with it?
• What do all these things have to do with each other?
• What is the big idea?
• What kind of change is this going to enable?

• Explain through demos
• We’ll just dive in and figure out what it all means as we go
• Can follow on if you want, but can also just watch me
• Some demos easier to follow than others
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What we need to get started
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Files you’ll need

• You’ll need GraalVM to do anything – https://graalvm.org/

• Plus some source files to run on it

• Download everything:
– https://www.dropbox.com/s/1t2ninff60ya4ni/ten-things-graalvm.tar.gz

(https://goo.gl/K14jfa)

• Download just the sources to run:
– https://www.dropbox.com/s/o7064h37wmdpbbs/ten-things-graalvm-sources.tar.gz

(https://goo.gl/b3ncW4)

• I also have these on USB drives for an emergency

https://graalvm.org/
https://www.dropbox.com/s/1t2ninff60ya4ni/ten-things-graalvm.tar.gz
https://goo.gl/K14jfa
https://www.dropbox.com/s/o7064h37wmdpbbs/ten-things-graalvm-sources.tar.gz
https://goo.gl/b3ncW4
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Files you’ll need

• Some demos use some other common tools – Maven, Google Chrome

• Some use some more complex software – Docker, Oracle Database

• But feel free to just watch if you want! I’ll run the demos myself
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System you’ll need

• AMD64

• macOS or Linux
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High performance Java
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Using GraalVM as your JDK

• You can use GraalVM as a drop-in replacement for OpenJDK

• 1.8 at the moment, will be updated to the 11 LTS soon

• Includes all the same commands, flags, options and so on
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Add it to your $PATH

$ export PATH=graalvm-ee-1.0.0-rc8/Contents/Home/bin:$PATH
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Compile and run as normal

$ javac TopTen.java
$ time java TopTen large.txt
…
real 0m18.905s

This demo is 
run with the 
EE version
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Compare to standard OpenJDK

$ time java -XX:-UseJVMCICompiler TopTen large.txt
…
real 0m23.102s

I will explain 
this flag 
shortly…
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What is going on?
• The Graal just-in-time compiler is one part of GraalVM
• It replaces (or runs as a tier above) the existing JIT compilers like C2
• It’s written in Java, which we think lets us improve it more easily, so it 

achieves better performance than C2
• Here we’re getting 20% faster performance on a benchmark
• Twitter see 18% faster in production on real Scala applications, using only 

the CE version – EE not needed for high performance
• Is it odd that a JIT compiler for Java is written in Java?
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JVMCI is the interface that lets you plug in a new JIT

$ time java -XX:-UseJVMCICompiler TopTen large.txt
…
real 0m23.102s
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This is one way to use GraalVM

• Just using it as a faster version of the JDK

• Drop-in replacement gives you Graal by default, everything else is 
unmodified
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High performance Java on OpenJDK 11
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Graal also works on standard OpenJDK 11

• Graal (the JIT compiler part) is also included in Graal

• As an experimental, unsupported option, hidden behind flags

• Older version, due to the release cycle

• We’d recommend using the GraalVM package to experiment with
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Enable Graal in OpenJDK 11

$ java -XX:+UnlockExperimentalVMOptions \
-XX:+EnableJVMCI \
-XX:+UseJVMCICompiler \
…

Doesn’t mention Graal, does 
it? JVMCI does service 

discovery and automatically 
finds Graal as the only JVMCI 

compiler available

On AMD64, on 
macOS and 

Linux
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Compile and run on OpenJDK 11

$ mvn package
$ java -jar target/benchmarks.jar -prof gc

This is using 
Java 11, not 
GraalVM!
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Run on OpenJDK 11 with Graal enabled

$ java -XX:+UnlockExperimentalVMOptions \
-XX:+EnableJVMCI \
-XX:+UseJVMCICompiler \
-jar target/benchmarks.jar -prof gc

This is using 
Java 11, not 
GraalVM!
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2.4x faster by enabling Graal

valhallaBench.Multiply.multiply 9231.032 us/op
valhallaBench.Multiply.multiply 3774.706 us/op
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This is a second way to use GraalVM

• Not using GraalVM, but using the key component from it, Graal

• Already present in OpenJDK 11

• Just need to enable it using some flags

• This is effectively what Twitter do (they probably build their own JDK and 
Graal, not sure, but it’s a detail)
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Low footprint, fast startup Java
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What about shorter running applications or functions?
• The JVM typically has a relatively slow time to start
– Compared to simpler VMs, like Python or Ruby
– Compared to native executables like those produced from Go or Rust
– JRuby ‘hello world’ startup time is an order of magnitude worse than standard Ruby

• The JVM typically takes up a relatively large amount of disk space
– Can be helped with jlink – down to tens of MB

• The JVM typically takes up a relatively large amount of RAM
– Interpreter, compiler, classfile parser, verifier etc all take up space
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Run as normal

$ time java TopTen small.txt
…
real 0m0.408s
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Compile to native using GraalVM

$ native-image TopTen
…
$ time ./topten small.txt
…
real 0m0.112s
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$ du -h topten
8.8M topten
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$ otool -L topten
topten:
/usr/lib/libSystem.B.dylib
/usr/lib/libz.1.dylib
/System/Library/CoreFoundation
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So what does this have to do with a JIT?

• Graal is written in Java

• So it can be used as a library from other Java code

• We realized that we could write a program to use it ahead-of-time, to build 
and ahead-of-time compiler

• This is what the native-image tool is – a Java application that uses Graal
as a library
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This is a third way to use GraalVM
• Using the native-image tool to ahead-of-time compile your application 

to native code
• No dependency on the JVM
• Small executables – Docker deployments
• Starts quickly, has a low footprint
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Run other languages
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GraalVM includes a new JavaScript interpreter

$ js –version
Graal JavaScript 1.0 (GraalVM CE Native 1.0.0-rc8)

$ js
> print("hello");
hello Doesn’t the JVM 

already include a 
JS interpreter?
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GraalVM also includes an implementation of Node.js

$ node --version
v10.9.0

$ npm --version
6.2.0
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$ npm install express

$ node hello-express.js
serving at http://localhost:8080
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You can plug new languages into GraalVM

$ gu install ruby 
$ gu install python
$ gu install R

$ gu install --file ruby-installable-ce-1.0.0-rc8-macos-amd64.jar 
$ gu install --file python-installable-ce-1.0.0-rc8-macos-amd64.jar 
$ gu install --file r-installable-ce-1.0.0-rc8-macos-amd64.jar

$ gu rebuild-images polyglot libpolyglot js llvm python ruby 

In reality you’d 
want to run this, 

but it takes a long 
time

This version works 
offline with the 
files on the USB 

drives



Copyright © 2018, Oracle and/or its affiliates. All rights reserved.  |

You can plug new languages into GraalVM

$ ruby --version
truffleruby 1.0.0-rc8, like ruby 2.4.4, GraalVM CE Native [x86_64-darwin]

$ graalpython --version
Graal Python 3.7.0 (GraalVM CE Native 1.0.0-rc8)

$ R --version
R version 3.4.0 (FastR)
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So what does this have to do with a JIT?
• We realized instead of writing languages that emit bytecode at runtime 

(JRuby) we could write languages that use the Graal JIT directly

• But that’s hard, so we realized we could write a framework, Truffle, to do 
that automatically, based on a simple interpreter

• Faster, as they use a more powerful JIT more directly

• Simpler, because a framework does most of the hard work, so easy to 
implement lots of languages

• Interopable (polyglot) because they all use the same system

• Using native-image they start quickly
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This is a fourth way to use GraalVM

• As a multi language platform

• Use as a drop-in replacement for your existing language platform

• Faster than standard implementations
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Polyglot
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GraalVM is polyglot as well as multi-language
• Like many languages implemented on the JVM, our languages can use Java 

libraries
• Run ruby-java.rb

You need to run ruby
with the --jvm flag
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GraalVM is polyglot as well as multi-language

You need to run 
graalpython with 

the --jvm flag

• Run python-java.rb
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Java is just another language in this case

You need to run node
with the --jvm flag
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So what does this have to do with a JIT?
• All the languages use the same JIT, and the same high-level implementation 

framework, so they can all work together
• Integration is at a higher level than with traditional bytecode 

implementation
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This is our fifth way to use GraalVM
• As a polyglot language platform
• Java interop
• Poyglot interop
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Native languages on the JVM
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Is our approach only suited to Java and dynamic languages?

• There’s nothing special about native languages
• C has the same if statements and while loops Ruby does
• C has pointers and malloc, but so does Ruby in its FFI module
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Is our approach only suited to Java and dynamic languages?

• Example – running gzip on the JVM

– Not a clean piece of code

– 8.6 k lines of C

–Macros, pointer arithmetic, unions

–We’ll avoid the complexity of autotools and make by using a single-file version

– http://people.csail.mit.edu/smcc/projects/single-file-programs/

http://people.csail.mit.edu/smcc/projects/single-file-programs/
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$ clang -c -emit-llvm gzip.c
$ gzip small.txt
$ lli gzip.bc -d small.txt.gz
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So what does this have to do with a JIT?
• We can use the JIT that we use for Java, JavaScript, Ruby, Python, R and so 

on, for C as well
• Actually – any language that can target LLVM
• C, C++, Objective C, Swift, Fortran, Rust, etc
• Genuine potential for dynamic optimization
• Potential for sandboxing as well
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This is our sixth way to use GraalVM
• To run native applications on the JVM
• Our demo showed a full application
• More probably use-case is running native libraries from Java or other 

managed languages
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Debugging
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Tooling for these extra languages

• With other languages on the JVM you usually have to use a Java debugger

• Perhaps with source information in the bytecode for the guest language

• Some custom debuggers, but not for all languages
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$ ruby fizzbuzz.rb
…
$ ruby --inspect fizzbuzz.rb
Debugger listening on port 9229.
To start debugging, open the following URL in Chrome:

chrome-devtools://devtools/bundled/…
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So what does this have to do with a JIT?
• All the languages are implemented in the same framework, so the 

debugger can understand them all via that framework
• The Graal JIT has support for deoptimization, so can debug optimized code 

running in production
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This is our seventh way to use GraalVM

• As a way to get a debugger for multiple languages

• Not all languages have a community large enough to support a high quality 
debugger

• Few have a user interface as nice as Chrome

• The debugger works cross-language as well

• If you implement your own language on our framework, you get this 
debugger for free



Copyright © 2018, Oracle and/or its affiliates. All rights reserved.  |

Monitoring
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Taking a heap dump of 
a Java application



Copyright © 2018, Oracle and/or its affiliates. All rights reserved.  |

Monitoring for these extra languages
• VisualVM and other similar tools let you monitor the JVM
• Non-JVM languages often don’t have this kind of tool
• With other languages on the JVM, then often show the underlying Java 

objects, rather than the guest language objects
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$ ruby render.rb

$ jvisualvm
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Change the format of 
the heap dump here 

to show it as Ruby



Copyright © 2018, Oracle and/or its affiliates. All rights reserved.  |

So what does this have to do with a JIT?

• Like the debugger, all languages use the same framework so VisualVM can 
understand them all

• All the languages use the same system to implement their objects on top of 
Java objects
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This is our eighth way to use GraalVM

• Like the debugger, to get high quality tooling for other languages
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Java as a native library
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Java code as a native library
• The Java ecosystem is phenomenal
• Often more and better libraries than available in other languages
• In the examples so far, it’s always been the Java code that has owned the 

process
• Can we run Java code inside another application that we already have?
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$ javac -cp sis.jar -parameters Distance.java
$ java -cp sis.jar:. Distance \

51.507222 -0.1275 40.7127 -74.0059
5570.25 km
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$ native-image -cp sis.jar:. Distance
...
$ ./distance 51.507222 -0.1275 40.7127 -74.0059
5570.25 km
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$ native-image -cp sis.jar:. -H:Kind=SHARED_LIBRARY \
-H:Name=libdistance
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$ clang -I. -L. -ldistance distance.c -o distance
$ otool -L distance
distance:

libdistance.dylib
/usr/lib/libSystem.B.dylib

$ ./distance 51.507222 -0.1275 40.7127 -74.0059
5570.25 km
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This is our ninth way to use GraalVM
• To compile Java code to native libraries
• Can then embed in a native application
• Or any language with a native FFI (Ruby, Python, Rust, Haskell, Go, etc)
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Polyglot in the database
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Demo using the Oracle Database MLE
• Multi-lingual (polyglot) edition

• Available as a Docker image

• Subject to the Oracle Technology Network license agreement, so you need 
to accept that and download it yourself

https://oracle.github.io/oracle-db-mle/releases/0.2.7/docker/

https://oracle.github.io/oracle-db-mle/releases/0.2.7/docker/
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$ docker load --input mle-docker-0.2.7.tar.gz # takes a while

$ docker run mle-docker-0.2.7 # takes a while
$ docker ps
$ docker exec -ti <container_id> bash -li
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JavaScript in the client and frontend, Oracle in the backend
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$ echo "{}" > package.json
$ npm install validator
$ npm install @types/validator

$ dbjs deploy -u scott -p tiger -c localhost:1521/ORCLCDB validator

$ sqlplus scott/tiger@localhost:1521/ORCLCDB
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SQL> select validator.isEmail('oleg.selaev@oracle.com') from dual;
SQL> select validator.isEmail('oleg.selaev') from dual;
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This is our tenth and final way to use GraalVM
• To run user functions (stored procedures) in the Oracle Database
• JavaScript at the moment, but Python soon, can also demo Ruby and R
• The same idea works in MySQL

• Note this functionality isn’t part of GraalVM
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How does this bring it all together?

• This is a…
– JavaScript interpreter, implemented in Java, using our framework

– Using the polyglot interface to talk to the query language

– Compiled ahead-of-time using Graal into a native library

–Which can be linked into the database

– Including Graal as a JIT within that library for high performance
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Wrap up
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https://commons.wikimedia.org/wiki/File:6DOF.svg
Creative Commons Attribution-Share Alike 4.0 International

https://commons.wikimedia.org/wiki/File:6DOF.svg
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I think it’s about giving people degrees of freedom
• Let people run the language they want
• With the ecosystem of libraries they want
• On the JVM or on native
• Embedded or embedding
• With the tooling they want
• With the performance they want
• ‘One compiler to rule them all’
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Get in touch with us
• https://graalvm.org/
• https://twitter.com/ChrisGSeaton
• https://gitter.im/graalvm/graal-core

https://graalvm.org/
https://twitter.com/ChrisGSeaton
https://gitter.im/graalvm/graal-core
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Safe Harbor Statement

The preceding is intended to provide some insight into a line of research in Oracle Labs. It 
is intended for information purposes only, and may not be incorporated into any 
contract. It is not a commitment to deliver any material, code, or functionality, and 
should not be relied upon in making purchasing decisions. Oracle reserves the right to 
alter its development plans and practices at any time, and the development, release, and 
timing of any features or functionality described in connection with any Oracle product or 
service remains at the sole discretion of Oracle. Any views expressed in this presentation 
are my own and do not necessarily reflect the views of Oracle.


