
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Ten Things You Can Do
With GraalVM
Hands-On Lab

Chris Seaton
Research Manager
Oracle Labs
October 2018

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development, release, and
timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

• What, in concrete terms, is GraalVM?
• What can I practically do with it?
• What do all these things have to do with each other?
• What is the big idea?
• What kind of change is this going to enable?

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

• What, in concrete terms, is GraalVM?
• What can I practically do with it?
• What do all these things have to do with each other?
• What is the big idea?
• What kind of change is this going to enable?

• Explain through demos
• We’ll just dive in and figure out what it all means as we go
• Can follow on if you want, but can also just watch me
• Some demos easier to follow than others

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

What we need to get started

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Files you’ll need

• You’ll need GraalVM to do anything – https://graalvm.org/

• Plus some source files to run on it

• Download everything:
– https://www.dropbox.com/s/1t2ninff60ya4ni/ten-things-graalvm.tar.gz

(https://goo.gl/K14jfa)

• Download just the sources to run:
– https://www.dropbox.com/s/o7064h37wmdpbbs/ten-things-graalvm-sources.tar.gz

(https://goo.gl/b3ncW4)

• I also have these on USB drives for an emergency

https://graalvm.org/
https://www.dropbox.com/s/1t2ninff60ya4ni/ten-things-graalvm.tar.gz
https://goo.gl/K14jfa
https://www.dropbox.com/s/o7064h37wmdpbbs/ten-things-graalvm-sources.tar.gz
https://goo.gl/b3ncW4

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Files you’ll need

• Some demos use some other common tools – Maven, Google Chrome

• Some use some more complex software – Docker, Oracle Database

• But feel free to just watch if you want! I’ll run the demos myself

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

System you’ll need

• AMD64

• macOS or Linux

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

High performance Java

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Using GraalVM as your JDK

• You can use GraalVM as a drop-in replacement for OpenJDK

• 1.8 at the moment, will be updated to the 11 LTS soon

• Includes all the same commands, flags, options and so on

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Add it to your $PATH

$ export PATH=graalvm-ee-1.0.0-rc8/Contents/Home/bin:$PATH

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Compile and run as normal

$ javac TopTen.java
$ time java TopTen large.txt
…
real 0m18.905s

This demo is
run with the
EE version

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Compare to standard OpenJDK

$ time java -XX:-UseJVMCICompiler TopTen large.txt
…
real 0m23.102s

I will explain
this flag
shortly…

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

What is going on?
• The Graal just-in-time compiler is one part of GraalVM
• It replaces (or runs as a tier above) the existing JIT compilers like C2
• It’s written in Java, which we think lets us improve it more easily, so it

achieves better performance than C2
• Here we’re getting 20% faster performance on a benchmark
• Twitter see 18% faster in production on real Scala applications, using only

the CE version – EE not needed for high performance
• Is it odd that a JIT compiler for Java is written in Java?

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JVMCI is the interface that lets you plug in a new JIT

$ time java -XX:-UseJVMCICompiler TopTen large.txt
…
real 0m23.102s

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

This is one way to use GraalVM

• Just using it as a faster version of the JDK

• Drop-in replacement gives you Graal by default, everything else is
unmodified

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

High performance Java on OpenJDK 11

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Graal also works on standard OpenJDK 11

• Graal (the JIT compiler part) is also included in Graal

• As an experimental, unsupported option, hidden behind flags

• Older version, due to the release cycle

• We’d recommend using the GraalVM package to experiment with

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Enable Graal in OpenJDK 11

$ java -XX:+UnlockExperimentalVMOptions \
-XX:+EnableJVMCI \
-XX:+UseJVMCICompiler \
…

Doesn’t mention Graal, does
it? JVMCI does service

discovery and automatically
finds Graal as the only JVMCI

compiler available

On AMD64, on
macOS and

Linux

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Compile and run on OpenJDK 11

$ mvn package
$ java -jar target/benchmarks.jar -prof gc

This is using
Java 11, not
GraalVM!

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Run on OpenJDK 11 with Graal enabled

$ java -XX:+UnlockExperimentalVMOptions \
-XX:+EnableJVMCI \
-XX:+UseJVMCICompiler \
-jar target/benchmarks.jar -prof gc

This is using
Java 11, not
GraalVM!

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

2.4x faster by enabling Graal

valhallaBench.Multiply.multiply 9231.032 us/op
valhallaBench.Multiply.multiply 3774.706 us/op

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

This is a second way to use GraalVM

• Not using GraalVM, but using the key component from it, Graal

• Already present in OpenJDK 11

• Just need to enable it using some flags

• This is effectively what Twitter do (they probably build their own JDK and
Graal, not sure, but it’s a detail)

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Low footprint, fast startup Java

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

What about shorter running applications or functions?
• The JVM typically has a relatively slow time to start
– Compared to simpler VMs, like Python or Ruby
– Compared to native executables like those produced from Go or Rust
– JRuby ‘hello world’ startup time is an order of magnitude worse than standard Ruby

• The JVM typically takes up a relatively large amount of disk space
– Can be helped with jlink – down to tens of MB

• The JVM typically takes up a relatively large amount of RAM
– Interpreter, compiler, classfile parser, verifier etc all take up space

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Run as normal

$ time java TopTen small.txt
…
real 0m0.408s

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Compile to native using GraalVM

$ native-image TopTen
…
$ time ./topten small.txt
…
real 0m0.112s

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

$ du -h topten
8.8M topten

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

$ otool -L topten
topten:
/usr/lib/libSystem.B.dylib
/usr/lib/libz.1.dylib
/System/Library/CoreFoundation

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

So what does this have to do with a JIT?

• Graal is written in Java

• So it can be used as a library from other Java code

• We realized that we could write a program to use it ahead-of-time, to build
and ahead-of-time compiler

• This is what the native-image tool is – a Java application that uses Graal
as a library

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

This is a third way to use GraalVM
• Using the native-image tool to ahead-of-time compile your application

to native code
• No dependency on the JVM
• Small executables – Docker deployments
• Starts quickly, has a low footprint

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Run other languages

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

GraalVM includes a new JavaScript interpreter

$ js –version
Graal JavaScript 1.0 (GraalVM CE Native 1.0.0-rc8)

$ js
> print("hello");
hello Doesn’t the JVM

already include a
JS interpreter?

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

GraalVM also includes an implementation of Node.js

$ node --version
v10.9.0

$ npm --version
6.2.0

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

$ npm install express

$ node hello-express.js
serving at http://localhost:8080

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

You can plug new languages into GraalVM

$ gu install ruby
$ gu install python
$ gu install R

$ gu install --file ruby-installable-ce-1.0.0-rc8-macos-amd64.jar
$ gu install --file python-installable-ce-1.0.0-rc8-macos-amd64.jar
$ gu install --file r-installable-ce-1.0.0-rc8-macos-amd64.jar

$ gu rebuild-images polyglot libpolyglot js llvm python ruby

In reality you’d
want to run this,

but it takes a long
time

This version works
offline with the
files on the USB

drives

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

You can plug new languages into GraalVM

$ ruby --version
truffleruby 1.0.0-rc8, like ruby 2.4.4, GraalVM CE Native [x86_64-darwin]

$ graalpython --version
Graal Python 3.7.0 (GraalVM CE Native 1.0.0-rc8)

$ R --version
R version 3.4.0 (FastR)

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

So what does this have to do with a JIT?
• We realized instead of writing languages that emit bytecode at runtime

(JRuby) we could write languages that use the Graal JIT directly

• But that’s hard, so we realized we could write a framework, Truffle, to do
that automatically, based on a simple interpreter

• Faster, as they use a more powerful JIT more directly

• Simpler, because a framework does most of the hard work, so easy to
implement lots of languages

• Interopable (polyglot) because they all use the same system

• Using native-image they start quickly

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

This is a fourth way to use GraalVM

• As a multi language platform

• Use as a drop-in replacement for your existing language platform

• Faster than standard implementations

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Polyglot

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

GraalVM is polyglot as well as multi-language
• Like many languages implemented on the JVM, our languages can use Java

libraries
• Run ruby-java.rb

You need to run ruby
with the --jvm flag

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

GraalVM is polyglot as well as multi-language

You need to run
graalpython with

the --jvm flag

• Run python-java.rb

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Java is just another language in this case

You need to run node
with the --jvm flag

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

So what does this have to do with a JIT?
• All the languages use the same JIT, and the same high-level implementation

framework, so they can all work together
• Integration is at a higher level than with traditional bytecode

implementation

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

This is our fifth way to use GraalVM
• As a polyglot language platform
• Java interop
• Poyglot interop

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Native languages on the JVM

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Is our approach only suited to Java and dynamic languages?

• There’s nothing special about native languages
• C has the same if statements and while loops Ruby does
• C has pointers and malloc, but so does Ruby in its FFI module

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Is our approach only suited to Java and dynamic languages?

• Example – running gzip on the JVM

– Not a clean piece of code

– 8.6 k lines of C

–Macros, pointer arithmetic, unions

–We’ll avoid the complexity of autotools and make by using a single-file version

– http://people.csail.mit.edu/smcc/projects/single-file-programs/

http://people.csail.mit.edu/smcc/projects/single-file-programs/

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

$ clang -c -emit-llvm gzip.c
$ gzip small.txt
$ lli gzip.bc -d small.txt.gz

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

So what does this have to do with a JIT?
• We can use the JIT that we use for Java, JavaScript, Ruby, Python, R and so

on, for C as well
• Actually – any language that can target LLVM
• C, C++, Objective C, Swift, Fortran, Rust, etc
• Genuine potential for dynamic optimization
• Potential for sandboxing as well

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

This is our sixth way to use GraalVM
• To run native applications on the JVM
• Our demo showed a full application
• More probably use-case is running native libraries from Java or other

managed languages

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Debugging

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Tooling for these extra languages

• With other languages on the JVM you usually have to use a Java debugger

• Perhaps with source information in the bytecode for the guest language

• Some custom debuggers, but not for all languages

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

$ ruby fizzbuzz.rb
…
$ ruby --inspect fizzbuzz.rb
Debugger listening on port 9229.
To start debugging, open the following URL in Chrome:

chrome-devtools://devtools/bundled/…

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

So what does this have to do with a JIT?
• All the languages are implemented in the same framework, so the

debugger can understand them all via that framework
• The Graal JIT has support for deoptimization, so can debug optimized code

running in production

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

This is our seventh way to use GraalVM

• As a way to get a debugger for multiple languages

• Not all languages have a community large enough to support a high quality
debugger

• Few have a user interface as nice as Chrome

• The debugger works cross-language as well

• If you implement your own language on our framework, you get this
debugger for free

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Monitoring

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Taking a heap dump of
a Java application

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Monitoring for these extra languages
• VisualVM and other similar tools let you monitor the JVM
• Non-JVM languages often don’t have this kind of tool
• With other languages on the JVM, then often show the underlying Java

objects, rather than the guest language objects

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

$ ruby render.rb

$ jvisualvm

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Change the format of
the heap dump here

to show it as Ruby

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

So what does this have to do with a JIT?

• Like the debugger, all languages use the same framework so VisualVM can
understand them all

• All the languages use the same system to implement their objects on top of
Java objects

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

This is our eighth way to use GraalVM

• Like the debugger, to get high quality tooling for other languages

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Java as a native library

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Java code as a native library
• The Java ecosystem is phenomenal
• Often more and better libraries than available in other languages
• In the examples so far, it’s always been the Java code that has owned the

process
• Can we run Java code inside another application that we already have?

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

$ javac -cp sis.jar -parameters Distance.java
$ java -cp sis.jar:. Distance \

51.507222 -0.1275 40.7127 -74.0059
5570.25 km

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

$ native-image -cp sis.jar:. Distance
...
$./distance 51.507222 -0.1275 40.7127 -74.0059
5570.25 km

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

$ native-image -cp sis.jar:. -H:Kind=SHARED_LIBRARY \
-H:Name=libdistance

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

$ clang -I. -L. -ldistance distance.c -o distance
$ otool -L distance
distance:

libdistance.dylib
/usr/lib/libSystem.B.dylib

$./distance 51.507222 -0.1275 40.7127 -74.0059
5570.25 km

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

This is our ninth way to use GraalVM
• To compile Java code to native libraries
• Can then embed in a native application
• Or any language with a native FFI (Ruby, Python, Rust, Haskell, Go, etc)

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Polyglot in the database

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Demo using the Oracle Database MLE
• Multi-lingual (polyglot) edition

• Available as a Docker image

• Subject to the Oracle Technology Network license agreement, so you need
to accept that and download it yourself

https://oracle.github.io/oracle-db-mle/releases/0.2.7/docker/

https://oracle.github.io/oracle-db-mle/releases/0.2.7/docker/

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

$ docker load --input mle-docker-0.2.7.tar.gz # takes a while

$ docker run mle-docker-0.2.7 # takes a while
$ docker ps
$ docker exec -ti <container_id> bash -li

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

JavaScript in the client and frontend, Oracle in the backend

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

$ echo "{}" > package.json
$ npm install validator
$ npm install @types/validator

$ dbjs deploy -u scott -p tiger -c localhost:1521/ORCLCDB validator

$ sqlplus scott/tiger@localhost:1521/ORCLCDB

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

SQL> select validator.isEmail('oleg.selaev@oracle.com') from dual;
SQL> select validator.isEmail('oleg.selaev') from dual;

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

This is our tenth and final way to use GraalVM
• To run user functions (stored procedures) in the Oracle Database
• JavaScript at the moment, but Python soon, can also demo Ruby and R
• The same idea works in MySQL

• Note this functionality isn’t part of GraalVM

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

How does this bring it all together?

• This is a…
– JavaScript interpreter, implemented in Java, using our framework

– Using the polyglot interface to talk to the query language

– Compiled ahead-of-time using Graal into a native library

–Which can be linked into the database

– Including Graal as a JIT within that library for high performance

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Wrap up

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

https://commons.wikimedia.org/wiki/File:6DOF.svg
Creative Commons Attribution-Share Alike 4.0 International

https://commons.wikimedia.org/wiki/File:6DOF.svg

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

I think it’s about giving people degrees of freedom
• Let people run the language they want
• With the ecosystem of libraries they want
• On the JVM or on native
• Embedded or embedding
• With the tooling they want
• With the performance they want
• ‘One compiler to rule them all’

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Get in touch with us
• https://graalvm.org/
• https://twitter.com/ChrisGSeaton
• https://gitter.im/graalvm/graal-core

https://graalvm.org/
https://twitter.com/ChrisGSeaton
https://gitter.im/graalvm/graal-core

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Team
Oracle
Florian Angerer
Danilo Ansaloni
Stefan Anzinger
Martin Balin
Cosmin Basca
Daniele Bonetta
Dušan Bálek
Matthias Brantner
Lucas Braun
Petr Chalupa
Jürgen Christ
Laurent Daynès
Gilles Duboscq
Svatopluk Dědic
Martin Entlicher
Pit Fender
Francois Farquet
Brandon Fish
Matthias Grimmer
Christian Häubl
Peter Hofer
Bastian Hossbach
Christian Humer
Tomáš Hůrka
Mick Jordan

Oracle (continued)
Vojin Jovanovic
Anantha Kandukuri
Harshad Kasture
Cansu Kaynak
Peter Kessler
Duncan MacGregor
Jiří Maršík
Kevin Menard
Miloslav Metelka
Tomáš Myšík
Petr Pišl
Oleg Pliss
Jakub Podlešák
Aleksandar Prokopec
Tom Rodriguez
Roland Schatz
Benjamin Schlegel
Chris Seaton
Jiří Sedláček
Doug Simon
Štěpán Šindelář
Zbyněk Šlajchrt
Boris Spasojevic
Lukas Stadler
Codrut Stancu

JKU Linz
Hanspeter Mössenböck
Benoit Daloze
Josef Eisl
Thomas Feichtinger
Josef Haider
Christian Huber
David Leopoldseder
Stefan Marr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

TU Berlin:
Volker Markl
Andreas Kunft
Jens Meiners
Tilmann Rabl

University of Edinburgh
Christophe Dubach
Juan José Fumero Alfonso
Ranjeet Singh
Toomas Remmelg

LaBRI
Floréal Morandat

University of California, Irvine
Michael Franz
Yeoul Na
Mohaned Qunaibit
Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Jan Vitek
Tomas Kalibera
Petr Maj
Lei Zhao

T. U. Dortmund
Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Duncan Temple Lang
Nicholas Ulle

University of Lugano, Switzerland
Walter Binder
Sun Haiyang

Oracle Interns
Brian Belleville
Ondrej Douda
Juan Fumero
Miguel Garcia
Hugo Guiroux
Shams Imam
Berkin Ilbeyi
Hugo Kapp
Alexey Karyakin
Stephen Kell
Andreas Kunft
Volker Lanting
Gero Leinemann
Julian Lettner
Joe Nash
Tristan Overney
Aleksandar Pejovic
David Piorkowski
Philipp Riedmann
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Oracle Alumni
Erik Eckstein
Michael Haupt
Christos Kotselidis
David Leibs
Adam Welc
Till Westmann

Oracle (continued)
Jan Štola
Tomáš Stupka
Farhan Tauheed
Jaroslav Tulach
Alexander Ulrich
Michael Van De Vanter
Aleksandar Vitorovic
Christian Wimmer
Christian Wirth
Paul Wögerer
Mario Wolczko
Andreas Wöß
Thomas Würthinger
Tomáš Zezula
Yudi Zheng

Red Hat
Andrew Dinn
Andrew Haley

Intel
Michael Berg

Twitter
Chris Thalinger

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The preceding is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development, release, and
timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

