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Why should I write parallel 
programs?
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H. Stutter. The free lunch is over – a fundamental turn toward concurrency in software. Dr. Dobb’s, 30(3), 2005.
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We already know how to make 
parallel programs



Structure your program so that 
there are tasks that can run at 

the same time
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a b c

Matrix 
multiplication

aA + bB + cC



D

E

F

a b c

Matrix 
multiplication

aD + bE + cF
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However, this only works if those 
tasks are entirely independent of 

each other
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Some kind of 
shared object - 

choke point



Ideally don’t write software with 
shared objects that cause choke 

points



Photo courtesy of Argonne National Laboratory.



Let’s look at a tricky problem

















Time

The entire board 
is one big shared 

object



We’re calling this an irregular 
problem - we can’t divide up 

the shared resource before the 
tasks start



“It's easier to ask forgiveness than it is 
to get permission.”

This photograph is a work of a sailor or employee of the U.S. Navy, taken or made during the course of the person's official duties. As a work of the U.S. federal government, the image is in the public domain.



We’ll assume that tasks will 
not get in each other’s way

If they do, we’ll sort it out when 
it happens
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A
little
more
time



Two questions:

How can you tell when one task gets in the 
way of another?

How can you cancel a task that has already 
been running?



Transactional memory

Instead of writing to memory, write to a log

You can tell if two tasks are getting in each 
other’s way by comparing their logs

You can cancel a task by throwing the log away
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Actually write to memory
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Transactional memory is moving 
from research to production

C, C++, Java, Scala, Clojure, Haskell



There are other techniques for 
reversing computation

If you know you added x to a value, subtract 

x. If you know you added a node to a graph, 
remove it.

The Jefferson Time Warp System from the 
mid-80s - send anti-messages over networks.



Do we have a solution?



Transactional memory can be slow

The hardware is probably limited

Not the magic bullet some hoped

Optimistic execution in general can be wasteful



Irregular problems are the 
billion dollar problems

Physical meshes
Web and social graphs

Machine learning networks
Data mining

[1]

[1] J. Tournois, C. Wormser, P. Alliez, and M. Desbrun. Interleaving Delaunay refinement and optimization for practical isotropic 
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