
The Challenges of 
Irregular Parallelism

Chris Seaton
seatonc@cs.man.ac.uk

chrisseaton.com

Supervisors: Ian Watson and Mikel Luján

Advanced Processor Technologies Group

mailto:seatonc@cs.man.ac.uk
mailto:seatonc@cs.man.ac.uk
http://www.chrisseaton.com/
http://www.chrisseaton.com/


Why should I write parallel 
programs?



CPU



CPU CPU



H. Stutter. The free lunch is over – a fundamental turn toward concurrency in software. Dr. Dobb’s, 30(3), 2005.



Core Core



Core Core

Core Core



Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core







We already know how to make 
parallel programs



Structure your program so that 
there are tasks that can run at 

the same time



Time



Time



A

B

C

a b c

Matrix 
multiplication

aA + bB + cC



D

E

F

a b c

Matrix 
multiplication

aD + bE + cF



Matrix 
multiplication



Matrix 
multiplication

Time



However, this only works if those 
tasks are entirely independent of 

each other



Time



Time

Some kind of 
shared object - 

choke point



Ideally don’t write software with 
shared objects that cause choke 

points



Photo courtesy of Argonne National Laboratory.



Let’s look at a tricky problem

















Time

The entire board 
is one big shared 

object



We’re calling this an irregular 
problem - we can’t divide up 

the shared resource before the 
tasks start



“It's easier to ask forgiveness than it is 
to get permission.”

This photograph is a work of a sailor or employee of the U.S. Navy, taken or made during the course of the person's official duties. As a work of the U.S. federal government, the image is in the public domain.



We’ll assume that tasks will 
not get in each other’s way

If they do, we’ll sort it out when 
it happens



Time



Time



Time



A
little
more
time



Two questions:

How can you tell when one task gets in the 
way of another?

How can you cancel a task that has already 
been running?



Transactional memory

Instead of writing to memory, write to a log

You can tell if two tasks are getting in each 
other’s way by comparing their logs

You can cancel a task by throwing the log away





0x80d2ef52
0x4ee47f35
0xd6b4eba9
0x2c86d524
0xe617f31d
0x40578fff
0x9bb7febc
0x4ddc0e5f
0xbd660807

0xecb10c62
0xbae0a866
0xe4c2615d
0x61639ad5
0xe617f31d
0x6a8bdcf3
0xe9e88989
0x8fbcf724
0x095b76c0



0x80d2ef52
0x4ee47f35
0xd6b4eba9
0x2c86d524
0xe617f31d
0x40578fff
0x9bb7febc
0x4ddc0e5f
0xbd660807

0xecb10c62
0xbae0a866
0xe4c2615d
0x61639ad5
0xe617f31d
0x6a8bdcf3
0xe9e88989
0x8fbcf724
0x095b76c0



0x80d2ef52
0x4ee47f35
0xd6b4eba9
0x2c86d524
0xe617f31d
0x40578fff
0x9bb7febc
0x4ddc0e5f
0xbd660807

0xecb10c62
0xbae0a866
0xe4c2615d
0x61639ad5
0xe617f31d
0x6a8bdcf3
0xe9e88989
0x8fbcf724
0x095b76c0

Actually write to memory





0x80d2ef52
0x4ee47f35
0xd6b4eba9
0x2c86d524
0xe617f31d
0x40578fff
0x9bb7febc
0x4ddc0e5f
0xbd660807

0x124683b3
0x60f005b2
0x831327fa
0xf69d8cf9
0x9ea7c8df
0x61f43a4a
0x170c4b44
0x7778a6aa
0x73068a29



0x80d2ef52
0x4ee47f35
0xd6b4eba9
0x2c86d524
0xe617f31d
0x40578fff
0x9bb7febc
0x4ddc0e5f
0xbd660807

0x124683b3
0x60f005b2
0x831327fa
0xf69d8cf9
0x9ea7c8df
0x61f43a4a
0x170c4b44
0x7778a6aa
0x73068a29

Actually write to memory Actually write to memory



Transactional memory is moving 
from research to production

C, C++, Java, Scala, Clojure, Haskell



There are other techniques for 
reversing computation

If you know you added x to a value, subtract 

x. If you know you added a node to a graph, 
remove it.

The Jefferson Time Warp System from the 
mid-80s - send anti-messages over networks.



Do we have a solution?



Transactional memory can be slow

The hardware is probably limited

Not the magic bullet some hoped

Optimistic execution in general can be wasteful



Irregular problems are the 
billion dollar problems

Physical meshes
Web and social graphs

Machine learning networks
Data mining

[1]

[1] J. Tournois, C. Wormser, P. Alliez, and M. Desbrun. Interleaving Delaunay refinement and optimization for practical isotropic 
tetrahedron mesh generation. Technical Report 6826, INRIA, 2009.



Chris Seaton
seatonc@cs.man.ac.uk

chrisseaton.com

mailto:seatonc@cs.man.ac.uk
mailto:seatonc@cs.man.ac.uk
http://www.chrisseaton.com/
http://www.chrisseaton.com/

