
Katahdin
Mutating a Programming Language’s Syntax and Semantics at Runtime

Chris Seaton
The University of Bristol
chris@chrisseaton.com

Abstract
Katahdin is a programming language where the running pro-
gram can modify the grammar that defines the syntax and se-
mantics of the language. New constructs such as statements
and expressions can be defined as easily as new types and
functions and then used in the next line of the program. Pro-
grammers can extend the language with constructs that better
express their programs without modifying the implementa-
tion of the interpreter. Katahdin is powerful enough that fun-
damental constructs such as for loops and array subscripting
are implemented from scratch in the language itself. Existing
languages can be implemented to either replace the grammar
to turn Katahdin into an interpreter for that language, or to
be composed with other grammars so that different parts of
a program can be written in different languages. The devel-
opment of Katahdin has addressed the problems of defining
and parsing a modular grammar and has produced a work-
ing interpreter with which the advantages of being able to
modify the grammar at runtime are easily demonstrated.

Keywords extensible grammar, modular grammar, packrat
parsing, parsing expression grammar

1. Introduction
In most compilers and interpreters the grammar is prede-
fined by the language’s developer. Parsers are written from
a grammar, sometimes by hand, sometimes with a parser
generator[8] that produces parser program from the grammar
automatically. The compiler or interpreter uses the parser to
create a tree representation of the source code. The seman-
tics of the language are usually informally defined and their
implementation is scattered across the source code of the
compiler or interpreter as methods that walk the parse tree.

[Copyright notice will appear here once ’preprint’ option is removed.]

To modify the definition of the language a programmer
would need access to the implementation source code and
knowledge of how it is designed. To add a new construct
to the language, such as a statement or expression, they
would have to modify the parser as well as write new code
to express the semantics, probably in many different parts
of the implementation. If a programmer took the time to do
this they would still have the problem of distributing their
modifications. Patches against an official release would have
to be applied by other developers unless they were merged
upstream.

There are many practical reasons why a programmer
would want to modify the language that they use: to add
constructs that better express their algorithms, to add con-
structs other languages have that they see as useful, and to
reduce boilerplate code and repetitive patterns. Solutions
such as C pre-processor macros and their prevalent use and
abuse shows us that programmers need to be able to cus-
tomise their languages. Languages without such a feature,
such as Java, need a whole release cycle to elapse to add
new language constructs. With a language that they can very
easily modify, programmers can experiment with the lan-
guage themselves. If they develop a useful construct they
can distribute it as a module for others to import.

In Katahdin programmers can define new rules to add
to the grammar, with methods that perform the semantic
action of the rule. New rules are defined with a statement
which can be part of a module, an if-statement, a method or
anywhere else a statement can appear. This flexibility means
that a programmer can store their constructs in modules,
conditionally define them and generally control how the
language is modified with control statements.

Katahdin can be seen as a generic language implemen-
tation. As easily as new statements and expressions can be
defined to slot into the existing language, programmers can
create a new grammar from scratch. Existing languages can
be re-implemented in terms of Katahdin and either used on
their own or a construct can be defined that lets programmers
write parts of their programs in different languages.

This power is achieved with recent advancements in
grammar theory and parsing technology and by taking the
approach that time and space can be used much more lib-

1 2007/4/23

erally than in most language implementations. In Katahdin
the grammar is a mutable data structure and instead of writ-
ing a parser program that corresponds to the grammar, either
by hand or with a parser generator tool, the data structure
is walked node-by-node to parse the input source. Optimi-
sations that trade off space with time are used to restore
practical program run time.

2. Rationale
Katahdin is a programming language instead of a parser gen-
erator. The language is imperative, object-oriented, duck-
typed and curly-braced. Programmers familiar with C, Java,
C], Python or almost any popular imperative language
should have no trouble using Katahdin.

New language constructs are defined as a special case of
defining a new class. The semantics for the construct are
implemented by defining methods in the class, using existing
language constructs. This class is the complete syntactical
and semantic definition for a new exponentiation operator:

class Pow : Expression {
pattern {
a:Expression ‘∧’ b:Expression

}
method Get() {
return System.Math.Pow(@a.Get(),
@b.Get());

}
}

The Get() method is defined for all expressions. To im-
plement the semantics of the exponentiation operator we call
Get() for both of the operands and then call the library
method System.Math.Pow(). The methods each construct
has depends on convention. Expressions have Get() and
Set() methods. If the Set() method is left out the expres-
sion cannot be assigned to: the default Set() implementa-
tion in Expression will throw an exception. Other constructs
have appropriate methods, for example statements all have
a Run() method. This class shows the Run() method being
overloaded to implement a for-loop-statement:

class ForLoop : Statement {
pattern {
‘for’ ‘(’ init:Expression ‘;’
cond:Expression ‘;’ inc:Expression ‘)’
body:Statement

}
method Run() {
init.Get();
while (cond.Get()) {
body.Run...();
inc.Get();

}

}
}

The body.Run...(); notation performs a call in the
calling method’s scope. This is so that references to variables
in the for loop’s body are resolved in the scope of the method
which contains the for loop, and not in the scope of the
method ForLoop.Run().

The majority of the Katahdin programming language is
implemented at runtime in this way. Language constructs
such as loops, lists and dictionaries are defined in the stan-
dard library which is imported as the interpreter starts.

Programmers using Katahdin can continue to extend the
language beyond the standard library with new constructs
to fit into the Katahdin language, or define a new language
from scratch. If there are multiple grammars defined, they
can be composed so that multiple languages can be used in
a single file. This class defines a new Katahdin Statement
which can contain any Python statement:

import ‘‘python.kat’’;

class PythonStatement : Statement {
pattern {
‘‘python’’ ‘‘{’’
statement:Python.Statement ‘‘}’’

}
method Run() {
statement.Run();

}
}

After defining this class the programmer would be able to
use a Python statement anywhere a statement is allowed by
enclosing it in a Python block.

for (int i = 0; i < 10; i++) {
python {
for j in range(0, 10):
print i * j

}
}

3. Modular, Extensible Syntax Definition
New language constructs can be defined as part of the appli-
cation but usually they will be collected into modules. When
a module is loaded the language definition is extended with
the constructs defined in it. A programmer may import un-
related modules written by different programmers that never
intended their modules to be used together. This means that
each module of new language constructs has to be defined
independently and able to be merged with any existing syn-
tax.

2 2007/4/23

3.1 Background on PEGs
In Katahdin, programmers express syntax using a parsing
expression grammar[6], with annotations to more elegantly
express common patterns. Parsing expression grammars
(PEGs) are a recognition based grammar, opposed to the
generational grammars normally used to define the syntax
of a language, such as the regular and context-free families
of grammars. PEGs are unambiguous and can always be
parsed in linear time which is important if we are to let the
programmer arbitrarily modify the grammar.

PEGs can be used to define the lexicon of the language
as well as the syntax, so a single grammar can be used
for both. Most language implementations use two separate
languages to define these, which increases the complexity
and fragments the language definition.

Writing a PEG is very similar to writing a RE or CFG.
Literal text is quoted, repetitions are expressed with the ? *
+ operators, alternatives with the | operator. There are special
literals used to match the end of the text.

The behaviour of the | operator is different in PEGs to
other grammars. Instead of matching any of the alternatives
it matches the first one that it can, trying the alternatives in
order. PEGs also have two semantic predicates, the & ‘and’
operator and the ! ‘not’ operator. & succeeds if it can match
the sub pattern, ! succeeds if it cannot. Neither of the two
predicates consumes any of the text that they match.

A PEG can express all LL(k) and deterministic LR(k)
grammars and many others[6]. However there are some pat-
terns that need fairly complex PEG rules to express. Unfortu-
nately these include common patterns found in almost every
language such as recursion, ambiguity and precedence. The
complex PEG rules are difficult to maintain and make mod-
ular definition of the grammar hard, as will be shown later.
Katahdin uses a modified PEG with an annotation opera-
tor to enable the grammar writer to better express these pat-
terns. Annotations are applied to blocks, which are marked
by curly braces, using the option keyword:

rule ← {option NAME = VALUE; ...}
rule ← {option NAME; ...}

The annotations control how the parser applies the rule,
and are used to express the common grammar patterns out-
lined in the next sections.

3.2 Recursion and Ambiguity
A common problem when defining the grammar of a lan-
guage is expressing rules that recurse and solving the am-
biguity that this introduces. Mathematical operators, present
in almost all programming languages, can have another in-
stance of themselves as an operand. For example the sub-
traction operator:

a - b - c

With a simple definition of the subtraction operator, this
expression could be interpreted in two ways, as either ((a -
b) - c) or (a - (b - c)). In mathematics there is a convention
of using the first interpretation to solve the ambiguity. This
convention is referred to as the associativity of the operator
and is implemented by controlling how rules in the grammar
recurse.

The subtraction operator is normally defined in languages
as left-associative. That means that the operator can appear
more than once in expressions, and that the operators should
bind tighter towards the left side of the expression. This can
be shown by making the implied order of evaluation explicit
using parentheses:

a - b - c - d
(((a - b) - c) - d)

The most natural way to express the subtraction operator
is with this expression:

exp ← exp ‘-’ exp

This defines the subtraction operator to be an expression,
followed by the text ‘-’, and then another expression. This
is how the programmer thinks of the operator as they use it,
but the definition does not work in a PEG. A PEG parser
would go to match exp, which instructs it to match exp, and
so on. The parser loops trying to match exp without ever
consuming any text. The rule is left recursive. That’s actually
what was wanted as the subtraction operator is indeed left
recursive in that the left hand side can be another subtraction
expression.

A common solution to the problem is to express left
recursion as repetition or by introducing an extra grammar
rule. These solutions require the grammar writer to express a
parsing algorithm for the rule instead of naturally expressing
the syntax:

exp ← number (’-’ number)+

The extra rule, recommended by Ford for use in PEGs[4,
page 40], is a suffix pattern:

exp ← number addSuffix
addSuffix ← ‘-’ number addSuffix
addSuffix ← ε

My solution is to use annotation. The operator is ex-
pressed naturally, and annotated as left recursive. The parser
can use this annotation to parse the rule left recursively, with-
out infinite recursion, as is shown later. The annotation is an
option applied to the obvious rule:

exp ← {option leftRecursive; exp ‘-’ exp}

3 2007/4/23

Other operators are right-associative, such as the ex-
ponentiation operator, and so require right recursion. The
parentheses operators are recursive, but do not need to be
marked specifically as left or right because the definition
starts with a ‘(’ character and so does not immediately re-
curse:

exp ← {option rightRecursive; exp ‘∧’ exp}
exp ← {option recursive; ‘(’ exp ‘)’}

In Katahdin, the default is to be simply recursive if no
other option is expressed. It can be negated to make rules
non recursive to express non-associative operators.

3.3 Precedence
Precedence, or priority, is a property of operators that de-
scribes the order in which they should be applied when there
is more than one operator in an expression. In mathematics
and most programming languages the * and / operators have
higher precedence over the + and - operators and so are ap-
plied to operands around them first. They are said to bind
tighter as they take operands from around them before other
operators do. The + and - operators are applied next. When
there is more than one operator with the same precedence,
they are applied together in a single left-to-right pass:

a + b * c / d - e
a + ((b * c / d) - e
((a + ((b * c) / d)) - e)

As with the other property of operators, their associativ-
ity, in a PEG the grammar writer is required to express oper-
ator precedence by writing a parsing algorithm. In the com-
mon solution show below, an expression is a term followed
by any number of expression suffixes, which are an applica-
tion of an addition or subtraction operator and then another
term. A term is a factor followed by any number of term suf-
fixes, which are the multiplication and division operators. A
factor is a number. These rules are expressed as follows:

exp ← term expSuffix*
expSuffix ← ‘+’ term
expSuffix ← ‘-’ term

term ← factor termSuffix*
termSuffix ← ‘*’ factor
termSuffix ← ‘/’ factor

factor ← number

These rules have totally fractured the programer’s view of
the operators. Adding a new operator with the same prece-
dence as addition requires understanding the algorithm that
the original grammar writer used and defining a new expSuf-
fix. The parser should be dealing with these problems, where

currently with PEGs the grammar writer is having to write
parsing algorithms.

Katahdin uses annotations to solve the problem of oper-
ator precedence. Operators are defined as before, annotated
with their associativity. The precedence is then set with an-
other annotation:

exp ← add
add ← {option leftRecursive; exp ‘+’ exp}
add ← {option leftRecursive; exp ‘-’ exp}
exp ← mul
mul ← {option leftRecursive; exp ‘*’ exp}
mul ← {option leftRecursive; exp ‘/’ exp}

precedence mul > add

The precedence-statement establishes a relation between
two rules. There the precedence of multiplication is set to be
higher than that of add.

Each operator is now defined with a single annotated
rule, and an annotation to express the relationship between
them. This much better matches the programmer’s view of
operators, and makes it easier to add new operators. For
example, to add a new modulo operator we define just two
new self-contained rules:

mod ← {option leftRecursive; exp ‘%’ exp}
precedence mod = mul

3.4 White Space
White space is the non-printing characters such as spaces
and new lines used along with punctuation to delimit tokens.
The text ‘foobar’ is a single token unless white space or
punctuation is used to separate the characters; ‘foo bar’,
‘foo.bar’. Programmers also use white space to format their
code for better human readability, and some languages, such
as Python and Haskell, use white space to express scope.

Traditional language development uses two different
tools for the lexical and syntactical analysis. White space
is normally only a lexical issue and so is discarded at that
stage. Where it does have relevance to the syntax, it is passed
as a token, like any other printing operator. At the syntax
analysis stage, the grammar writer does not need to deal
with the white space. In a PEG the two stages are combined
for a single definition of the language. A pure PEG needs to
explicitly allow white space wherever it is permissible:

exp ← exp whitespace? ‘+’ whitespace? exp

However, this is not convenient and doesn’t fit with how
programmers naturally conceive syntax. Another option is to
always allow white space unless it is explicitly disallowed.
The Rats![7] parser generator takes this approach by sepa-
rating lexical and syntactical rules. White space is then not

4 2007/4/23

matched within a lexical rule. In Katahdin I took the same
approach but as I have not created a separation between lexi-
con and syntax, an annotation is used to disable white space:

identifier ← {option whitespace = null;
(’a’..’z’)+}

The white space annotation is passed down into rules that
are matched so that it can be used to set the global white
space pattern for a language:

ws ←‘ ’ |‘\t’ |‘\n’ |‘\r’ ‘\n’?
program ← {option whitespace = ws;
statement*}

3.5 Parse Trees
The grammar described so far can be used to verify the con-
formance of a text. We want the parser to output a data struc-
ture that represents the syntax applied to the text. The most
simple form of parse tree is the concrete syntax tree. Each
rule that is matched forms a new sub-tree, with branches be-
ing the tokens or rules matched within the rule. The root
node of the sub-tree is the name of the rule matched. The fol-
lowing shows an example text and the parse tree produced:

‘a + b * c’
(add ‘a’ ‘+’ (mul ‘b’ ‘*’ ‘c’))

More useful is the abstract syntax tree of the text. In this
tree, only meaningful tokens are added to the tree. The ‘+’
and ‘*’ tokens are not meaningful because we already have
the name of the rules matched. Now the add and mul nodes
both have just two children: the two operators. This kind
of parse tree better fits the way programmers conceive a
grammar:

‘a + b * c’
(add ‘a’ (mul ‘b’ ‘c’))

A parser cannot always determine what should be in-
cluded in the abstract tree and what should not, so generat-
ing an AST requires the grammar writer to annotate nodes.
The Antlr parser generator produces a concrete syntax tree
by default, but allows the grammar writer to annotate with a
caret tokens that they want to use as the root node for a new
sub-tree in the AST:

exp : term (ADD∧ term)* ;

In the above rule, which follows the pattern for left recur-
sion explained earlier, each time the ADD token is matched
a new sub-tree is created, rooted with the ADD node:

‘a + b + c’
(ADD (ADD ‘a’ ‘b’) ‘c’)

This method was used for Antlr because in its grammar
each rule might be matching more than one syntactic con-
struct. The exp rule above matches any number of add opera-
tions. In Katahdin each rule matches a self contained syntac-
tic construct, so each rule produces a single sub-tree rooted
with the name of the rule matched. In the implementation,
each rule is attached to a class definition, which is instanti-
ated when the rule is matched:

class Add {
pattern {
Expression ‘+’ Expression

}
}

Each time Add is matched, an Add object is instantiated.

3.5.1 Fields
Each node in the Katahdin grammar returns an object when
parsed. Text nodes return the text matched as a string object,
repetitions and sequences return a list of the objects returned
by the match. Using the ‘:’ label operator the grammar writer
can assign these results to a field in the object instantiated for
the match.

class Add {
pattern {
a:Expression ‘+’ b:Expression

}
}

When the Add rule is matched and the Add class is in-
stantiated, the results of parsing the two references to Ex-
pression is assigned to the fields a and b in the object. We
don’t need to store the text ‘+’ as the class of the object tells
us the type of expression we matched. As ‘+’ is not labelled
it is discarded. Text nodes are never matched by default as
they are rarely needed, but this can be overridden with an
option annotation. If a repetition or sequence is labelled it
assigns a list object containing all the matched nodes. If any
of the matched nodes were lists, the items in the list are ap-
pended instead of the list object. For example, to match the
parameters of a function call, delimited by commas:

‘(’ parameters:(Expression
(’,’ Expression)*) ‘)’

The parameters field will be set to a list of the Expression
objects instantiated for each parameter.

3.5.2 Tokens
As we are matching lexemes with the grammar, we need
rules to match identifiers, numbers and so on. With the
scheme for building parse trees described above we can
obtain a list of the characters in an identifier, or digits in
a number, but grammar writers are more likely to expect

5 2007/4/23

a single string when matching these constructs. For this,
Katahdin provides the token operator. The token operator
matches a sub-pattern and returns the text that was matched
instead of the parse tree:

id ← text:token{(’a’..’z’)+}

4. Parsing
The PEG that the Katahdin grammar is based on can be
parsed by a simple top down[2], recursive descent parser.
Such a parser is required to backtrack[3] when parsing the
alternative | operator. Each alternative fails or succeeds to
match. If it fails, the parser returns to the point in the text
where it started trying to match the alternative, and tries
to match the next alternative. When one of the alternatives
succeeds and matches, the alternative operator matches and
the parser moves on. This parsing algorithm is valid but risks
exponential run time. In the example below, to match a we
try the alternatives b, c and d, one after the other. All of those
rules start with a reference to the expression e, so in a worst
case scenario we try to match e three times.

a ← b | c | d
b ← e f
c ← e g
d ← e h

The parsing of e on the second and third times is redun-
dant. We already worked out whether or not the rule matched
at that point in the text, and had the resulting parse tree. A
time-space trade off is therefore to store the result of parsing
e at that location, and when we try to parse it again, retriev-
ing that cached result. This is known as packrat parsing[5].

The store is a map of tuples of the rule being matched and
the current parser state, to the resulting parse tree or the null
value if no parse tree matched. The parser state is a tuple
of variables that effect how the parser could match a rule.
For example, the white space rule, the current level of prece-
dence being matched, and most importantly the position in
the text. Before every rule is matched, the store is checked
to see if the rule was previously applied when the parser was
in this state. If it was, the value from the store is returned,
otherwise the rule is applied as normal and the result stored.
This is equivalent to factoring out the common rule e.

a ← e (b | c | d)
b ← f
c ← g
d ← h

The Katahdin parser has two important extensions to
packrat parsing to support the addition of recursion and

precedence annotations to the Katahdin PEG, described in
the following sections.

4.1 Precedence
Precedence is set in the grammar with an annotation of the
form:

precedence A = B
precedence A < B
precedence A < B

Each precedence-statement establishes a relationship be-
tween two rules. Multiple statements build up an order be-
tween many rules.

The parser maintains a current precedence. When enter-
ing a rule the precedence is raised to that of the rule if it is
higher. When the rule is left the precedence is lowered back
to where it was previously.

Rules fail if their precedence is not higher than the cur-
rent precedence. This prevents the operands of a multipli-
cation operator matching an addition expression. Some ex-
pressions, such as parentheses, can contain expressions of
any precedence. This is indicated with the dropPrecedence
option:

exp ← paren
paren ← ‘(’ {option dropPrecedence; exp} ‘)’

The parser resets the current precedence to the lowest
value when it enters a block with the dropPrecedence option.

The semantics of the alt operator is modified from that
of a standard PEG to support the precedence annotations.
The alternatives are sorted into groups by precedence. When
matching the alt, the groups are tried in order of increasing
precedence. Within each group all the alternatives are tried
and the longest successful match returned. After an alterna-
tive has been matched, no more groups are tried. Rules with
no precedence set are considered to have the highest prece-
dence, and so are tried last. Within each precedence group
in an alt, all alternatives are tried and the longest match is
returned.

For example, add, sub, mul and div expressions are de-
fined as usual in two groups of increasing precedence (add
sub) (mul div). When parsing an expression the parser would
first try to parse both add and sub. The longest successful
match would be returned. If neither matched, mul and div
would tried in the same way.

Normally in a PEG the first match is taken but in Katahdin
this only applies within each precedence group. Katahdin
was designed like this because in a normal PEG the gram-
mar writer has control over what rules are defined and in
what order. In Katahdin the grammar is modular. Someone
writing a module’s grammar does not know what their gram-
mar will be composed with and cannot control where their

6 2007/4/23

rules come in lists of alternatives that other modules have
modified. The rule that the longest alternative is taken is
easy to understand for programmers and users, and better
allows modular definition of the grammar.

4.2 Recursion
The parser supports four kinds of recursion, set with the
recursive, leftRecursive and rightRecursive options. Rules
are simply recursive by default. The recursive option can be
negated to make a rule non-recursive, or set leftRecursive or
rightRecursive to make a rule left or right recursive.

4.2.1 Simply Recursive Rules
Simple recursion is the behaviour of the algorithm described
so far. Simply recursive rules can be recursed into by the
parser from any reference in its definition.

4.2.2 Left Recursive Rules
Left recursive rules are parsed by disallowing recursion to-
tally, and then reapplying the rule as many times as possible,
using what was already matched as the left hand side for
each new application.

exp ← number
exp ← add
add ← {option leftRecursive; a:exp ‘+’ b:exp}

When parsing add, the parser will not recurse when
matching a or b, but after a successful match it will apply
add again, using what was just matched for a and starting at
‘+’.

In the general case, when reapplying the rule the parser
will make any reference to the recursive rule succeed, yield-
ing the previously matched tree.

1 + 2 + 3

When add is applied to the above text, recursion is disal-
lowed so a and b match the numbers 1 and 2 respectively.

(1 + 2)

As add is annotated as being left recursive, the rule is then
applied again, passing that (1 + 2) should be yielded for the
left hand side and starting at the second ‘+’.

((1 + 2) + 3)

The parser tries to apply the rule again for a third time,
but in this case fails when ‘+’ fails to match. The previous
successful tree is yielded from the original application of
add.

This effectively implements the following pattern:

add ← number (‘+’ number)*

When left recursing an add rule we want to try to match
sub as well. In the example below, (1 + 2) would be matched
by add, and then the add rule would left recurse to match a
sub rule:

((1 + 2) - 3)

This is implemented by left recursing into any rule of the
same precedence in the alt that lead us to match the first
rule. The set of rules to left recurse into is set by the alt
operator from the current precedence group, and contains all
left recursive rules.

4.2.3 Right Recursive Rules
Right recursive rules are parsed by adding the constraint that
the parser will only recurse back into the rule on the right
hand side of the expression. The right hand side is taken to
be everything after the first node that is matched.

exp ← number
exp ← pow
pow ← {option rightRecursive; a:exp ‘∧’ b:exp}

When parsing pow, recursion is disallowed for the left
hand side, a, just as if the rule were non-recursive. Recursion
is allowed for the rest of the rule, including b. Normally
rules fail if their precedence is not higher than the current
precedence. On the right hand side of a right recursive rule,
as well as allowing recursion, rules are allowed to match if
their precedence is equal to the current precedence.

1 ∧ 2 ∧ 3

When pow is applied to the above text the left hand side
is not allowed to recurse and so can only match a number,
1. The right hand side is allowed to recurse and so matches
another pow expression, (2 ∧ 3).

(1 ∧ (2 ∧ 3))

This effectively implements the following pattern:

pow ← number (‘∧’ pow)?

4.2.4 Non-Recursive Rules
Non-recursive rules are implemented by totally disallowing
recursion, as while parsing the left hand side of a right
recursive rule.

4.3 Implementation
Katahdin is implemented as an interpreter, written in the
C] programming language using Novell’s implementation of
the .NET framework, Mono. C] and Mono were chosen over

7 2007/4/23

Java and other possible platforms because the class library
includes efficient support for emitting code at runtime.

The interpreter program supports a minimal base lan-
guage at start up. The base language includes class state-
ments and all of the Katahdin PEG operators. The only lan-
guage statements and expressions that are included in the
base are those that are best compiled to specific bytecode in-
structions or cannot conveniently be expressed in terms of
other constructs. For example function and class statements,
arithmetic operators, method calling, exception handling and
so on are all implemented in base. Array subscripting is im-
plemented as a method call so is defined in the standard li-
brary in terms of the base method call operator.

The rest of the language is defined in the standard library
which is imported before the user’s program is run. The
standard library builds higher level language constructs from
lower level constructs. For example, the for-loop-statement
is defined in terms of the while loop, and then the for-each-
loop-statement in terms of the for-loop-statement.

4.4 Optimisations
Instead of the parser walking each node in the grammar,
the nodes in a rule can emit code that is compiled into
single method. The .NET runtime allows a program to emit
bytecode instructions that it can just-in-time compile (JIT)
to machine instructions to be run by the processor. The
code that each node emits depends on its parameters. For
example, if a text node is used where white-space has been
disabled, no white-space handling code will be emitted.

This makes Katahdin similar to parser generators in that
it is generating parsing methods from the grammar, but
Katahdin directly generates bytecode at runtime and does
not have to invoke a compiler. When the grammar changes,
Katahdin discards the old parse methods and compiles the
new grammar in its place.

There is scope to employ adaptive optimisation[1], as the
Java HotSpot virtual machine does, instrumenting the parse
methods and recompiling with optimisations based on how
the methods are being used.

These techniques could also be applied to the code in-
termediate tree data structure, which currently is interpreted
node-by-node.

5. Applications
There are many reasons why a programmer would want to
add new language constructs at runtime. The Katahdin stan-
dard library creates many of the standard language features
in Katahdin code, where most language implementations
would have custom code in the interpreter or compiler.

An assert-statement checks a condition and throws an
exception if it fails. They are used for debugging so the
programmer will want to know where in the source code an
assertion has failed, and may want to disable them entirely
when using the software in production.

In the C programming language to implement assert we
need to use the pre-processor and the special hook macros
FILE and LINE :

#ifdef NDEBUG
#define assert(cond)

#else
#define assert(cond) \
printf(‘‘Error: file %s, line %d’’, \

FILE , LINE)
#endif

The Java programming language has no pre-processor
and so no way to conditionally compile code, and a method
call cannot be used as there would be no way to disable the
calls. To implement assert for version 1.4, Sun had to mod-
ify the source of Java compiler to add a new statement and
make a new release. To be able to use the assert-statement all
users of Java had to update their installations. In Katahdin,
assert is implemented as part of the standard library in the
Katahdin language itself, without any special support from
the runtime. If the standard library didn’t include assert, pro-
grammers would be free to implement it themselves without
modifying the runtime. Unlike the C implementation, the
Katahdin assert is a statement like any other:

class AssertStatement : Statement {
pattern {
‘assert’ conditionSource:token{
condition:Expression} ‘;’

}
method Run() {
if (!debug)
return;

if (!@condition.Get...() as System.Bool)
throw @conditionSource.Trim()
+ ‘ failed ’
+ @condition.Source.ToString();

}
}

assert n <= 100;

5.1 Inline Sql
Performing Sql queries to a database through a client library
API is a very common operation. In most languages pro-
grammers pass the Sql as a string to a client library.

The Katahdin solution is to define a grammar for the
flavour of Sql that the database uses. Then define an SqlEx-
pression which references the Sql grammar. Instead of each
of the Get() methods in the Sql grammar interpreting the
tree, they return strings which are built up to form a full
query which can be passed to the existing client library.

8 2007/4/23

The syntax of the Sql is checked at compile time along
with the program code and injection attacks are excluded be-
cause query building, string quoting and character escaping
are handled by the semantic actions of the grammar rules.

import ‘‘sql.kat’’;
class SqlExpression : Expression {
pattern {
option recursive = false;
database:Expression ‘?’
statement:Sql.Statement

}
method Get() {
// Evaluate the operands
database = @database.Get...();
sql = @statement.Get...();
// Execute the command
command = database.CreateCommand();
command.CommandText = sql;
reader = command.ExecuteReader();
// Read each row into a list
rows = [];
while (reader.Read()) {
row = [];
for (n = 0; n < reader.FieldCount; n++)
row.Add(reader.GetValue(n));

rows.Add(row);
}
return rows;

}
}

children = contactDatabase? select name
from contacts where age < 18;

5.2 Multiple Programming Languages
In the previous example it was made possible to use both
Katahdin and Sql in the same file. Sql is a simple language
used in a very specific way, but the same technique can be
used to define the grammar of a general purpose language
and allow it to be used from within Katahdin.

If the grammar of Python is defined in a module python.kat,
we can import it and define a new Katahdin statement that
allows the programmer to use Python statements:

import ‘‘python.kat’’;

class PythonStatement : Statement {
pattern {
‘‘python’’ ‘‘{’’
statement:Python.Statement ‘‘}’’

}
method Run() {
statement.Run();

}
}

for (int i = 0; i < 10; i++) {
python {
for j in range(0, 10):
print i * j

}
}

The using-statement changes the root node in the gram-
mar and makes Katahdin parse the rest of the program as a
different language:

import ‘‘python.kat’’;
using Python.Program;

def factorial(n):
if n == 0:
return 0

else:
return n * factorial(n - 1)

In this way, Katahdin becomes a generic language imple-
mentation, taking both a language definition and program
source text as input.

With Katahdin different languages can be used in the
same file, method, statement, or even expression. There
is nothing special about the Katahdin language constructs
compared to any that the programmer defines, so all lan-
guages are on the same level, evaluated in the same pass.

It is not expected that developers will want to write each
line of their program in a different language – there are more
practical applications. For example, a research group might
have a standard pseudo random number generator proce-
dure written in FORTRAN. They want to use the same pro-
cedure for all their applications to maintain result consis-
tency. If a programmer wanted to write a new application
in Python they would normally have to translate the proce-
dure, carefully checking that the semantics were exactly the
same. Apart from the time taken to translate, there is now
the problem of maintaining twice the code. In Katahdin, the
programmer could write his program in straight Python and
have just the pseudo random number generator procedure
written in FORTRAN. The FORTRAN procedure could be in
the same file as the Python code, with no need for an external
library or binding layer.

6. Conclusions
Katahdin opens up the exciting possibility of programmers
routinely customising the languages that they use. A com-
munity of developers could create a centralised library of
language constructs from which programmers would pick
and choose to create the best language to express their ap-

9 2007/4/23

plication. New ideas for language development could be ex-
perimented with more rapidly than is currently possible.

Libraries written in one language could be used without
bindings by any other language. Legacy applications written
in little-used languages could be modified line-by-line in
whatever language you currently have developers trained in.
With many language definitions, Katahdin could become a
single runtime for running any language. It would be feasible
to port the runtime to different platforms such as Java and
native C so that any language could be run on any platform.

Katahdin uses traditional language development tech-
niques but moves them to the runtime and allows them to
use mutable data structures. Traditional parser generators
take a grammar and produce a program to parse it, Katahdin
also does this but at runtime, emitting code just-in-time to
parse the rules and recompiling the parser if the grammar
data structure changes.

Although Katahdin is fast enough to be useable (parsing
the standard library takes a few seconds on a modest work-
station) the performance has not been analysed in any de-
tail. Also unknown are the problems that will surely surface
when programmers compose unrelated grammars that were
written by different programmers and were never intended
to work together. Checks for conflicting rules and ambiguity
detection will be needed, but currently Katahdin accepts any
grammar and will try to parse it.

Acknowledgments
I would like to thank my project supervisor, Dr Henk Muller,
for his guidance through my project and his help in preparing
this paper.

References
[1] Matthew Arnold, Stephen Fink, David Grove, Michael Hind,

and Peter F. Sweeney. Adaptive optimization in the Jalapeño
JVM. ACM SIGPLAN Notices, 35(10):47–65, 2000.

[2] Alexander Birman. PhD thesis, 1970.

[3] Alexander Birman and Jeffrey D. Ullman. Parsing algorithms
with backtrack. Information and Control, 23, 1973.

[4] Bryan Ford. Master’s thesis, 2002.

[5] Bryan Ford. Packrat parsing: Simple, powerful, lazy, linear
time. Symposium on Principles of Programming Languages,
2002.

[6] Bryan Ford. Parsing expression grammars: A recognition-
based syntactic foundation. Symposium on Principles of
Programming Languages, 2004.

[7] Robert Grimm. Better extensibility through modular syntax.
Programming Language Design and Implementation, 2006.

[8] Stephen C. Johnson. Unix Programmer’s Manual, 1979. Yacc:
Yet Another Compiler-Compiler.

10 2007/4/23

